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Abstract— We present a neuromorphic Analogue-to-Digital 
Converter (ADC), which uses integrate-and-fire (I&F) neurons 
as the encoders of the analogue signal, with modulated 
inhibitions to decohere the neuronal spikes trains. The 
architecture consists of an analogue chip and a control module.  
The analogue chip comprises two scan chains and a two-
dimensional integrate-and-fire neuronal array.  Individual 
neurons are accessed via the chains one by one without any 
encoder decoder or arbiter. The control module is implemented 
on an FPGA (Field Programmable Gate Array), which sends 
scan enable signals to the scan chains and controls the inhibition 
for individual neurons. Since the control module is implemented 
on an FPGA, it can be easily reconfigured. Additionally, we 
propose a pulse width modulation methodology for the lateral 
inhibition, which makes use of different pulse widths indicating 
different strengths of inhibition for each individual neuron to 
decohere neuronal spikes.  Software simulations in this paper 
tested the robustness of the proposed ADC architecture to fixed 
random noise. A circuit simulation using ten neurons shows the 
performance and the feasibility of the architecture. 

I. INTRODUCTION 
Conventional ADCs encode continuous-time signals into a 

discrete-level representation. Their output data rate is 
independent of the signal characteristics. For example, if the 
input signal is zero, the ADC would continue to generate 
samples at a fixed output rate.  For certain applications, some 
degradation can be tolerated in the recovery of the signal as 
long as the power consumption, size and bandwidth 
constraints are met. However, the conventional ADCs fail to 
utilise the signal information resulting in unnecessary power 
and bandwidth consumption.  Owing to the shortcoming there 
has been a significant interest in exploring novel schemes for 
analogue-to-digital conversion. An alternative approach is to 
use irregular samplers such as neuromorphic ADCs [1]–[6]. 
For example, Watson and his colleagues have used single-
layer integrate-and-fire networks with inhibitory connections 
for analogue-to-digital conversion in [5]. In their proposed 
asynchronous system, all the neurons are fully connected with 
the lateral inhibitions. These neuromorphic ADCs use 
integrate-and-fire neurons as time or rate encoders of the 
analogue input. Their advantages include speed, accuracy, and 

robustness to noise and circuit mismatch. Lateral inhibition 
implemented in these systems is used to decohere the parallel 
pathways. This prevents the neurons from firing at the same 
time, so that the neuronal spikes from different neurons can 
distribute evenly across time for a constant input value. 
However, in practice the same inhibitory connections to all 
neurons does not decohere the spikes well due to delays in the 
feedback (inhibitory) connections. In this paper, we propose a 
neuromorphic ADC architecture that makes use of an 
analogue two-dimensional integrate-and fire neuronal array as 
the basis, with a control module implemented on an FPGA to 
access individual neurons in the network, and a pulse width 
modulation methodology to control the inhibition connection 
among all the neurons. Each neuron receives different 
amounts of inhibition, which ensures decoherence of the 
neuronal spikes. The network architecture is shown in Fig. 1.  

II. ARCHITECUTURE  

A. Architecture  
The programmable neuromorphic ADC architecture 

proposed in this paper consists of a control module and an 
analogue neuronal chip. The control module is called the 
inhibition generator, which is implemented on an FPGA. It 
comprises a scan enable generator and a pulse width 
modulator. The analogue neuronal chip consists of a two-
dimensional array of integrate-and-fire neurons and shift 
registers. The architecture is shown in Fig. 2.  

 
Fig. 1. ADC network; the analogue signal is fed into all the 
neurons in the network, and if one of the neurons fires, all 
neurons receive different strengths of inhibitions by using the 
pulse width modulation methodology. 
 



  The integrate-and-fire neurons are arranged in a two-
dimensional array. Two scan enable pulses from the inhibition 
generator are shifted along the column and the row scan chain 
respectively.  A neuron is selected if both its column and row 
enable pulse are reached. Hence, the interface between the 
inhibition generator and the chip becomes simple and 
hardware-friendly. 

 All the neurons use the same input port and they will 
leaky-integrate the analogue input signal all the time. The 
output channel and the inhibition channel are shared by all the 
neurons using a time-multiplexing approach [7]–[13]: only the 
selected neuron drives the output and receives the inhibition 
channel in the time step at which it is selected. 

 For example, as shown in Fig. 3 (A), one row and three 
columns of neurons are used to form a network. At the first 
time step T1, the scan enable signal reaches the first column 
register, and Neuron1 is selected. If the membrane voltage of 
Neuron1 reaches the threshold, it will generate a spike to the 
output channel, as well as an inhibition flag to the inhibition 
generator.  

As the inhibition generator receives the flag, it will first 
check whether Neuron1 has received any inhibition signals 
from other neurons. If Neuron1 has not received any 
inhibitions from other neurons, the inhibition generator will 
send a series of inhibition signals with different pulse widths 
to Neuron1 (blue pulse in Fig. 3 (B)), Neuron2 (pink pulse) 
and Neuron3 (green pulse) sequentially at time step T1, T2 
and T3. The first (blue) pulse width is the longest one to reset 
the membrane voltage of Neuron1 to zero. Otherwise, if 
Neuron1 has already received an inhibition pulse from another 
neuron, the inhibition generator will not generate any 
inhibitions anymore, and only a spike will be generated in T1.  

  If the membrane voltage of Neuron1 is below the 
threshold, neither the spike nor the inhibition flag is generated 
within the current time step. Then the next neuron Neuron2 in 
the next time step is scanned, and Neuron3 at the third time 
step T3 is followed. After all the three neurons have been 
scanned, their membrane voltages have been set to different 
levels. As a result their spikes will be decohered. 

Additionally, the inhibition generator on the FPGA 
provides a programmable way for us to decide the inhibition 
algorithm to the neurons in the network. Any change and 
improvement of the inhibition methodology can be 
accomplished by simply changing the Verilog code on the 
FPGA. 

B. Two-dimensional Neuronal Array  
The analogue chip has been fabricated using IBM 130nm 

technology for prototyping. We have used low power 
transistors in the chip to achieve low power consumption. The 
chip consists of two scan chains and a 30by7 integrate-and-
fire neuronal array. Thus, a total of 210 neurons distributed 
across 30 columns and 7 rows, constitute this two dimension 
neuronal array. 

C. Integrate-and-fire Neuron 

 
Fig. 2.  Architecture of the Neuromorphic ADC. 
 

 

 
Fig. 3. (A) Time-multiplexing approach;  (B) Pulse width 
modulation methodology. 

 



The schematic of the integrate-and-fire neuron is shown in 
Fig. 4. For simplicity, we assume that the neuron is always 
being selected and all the transistors controlled by the selected 
signals are conducting. The analogue input current is mirrored 
to the node Exc_en via a current mirror; the node Vlim_exc is 
connected to the gate of M2 as well as M7. M2 is a cascade 
transistor to limit the source-drain voltage of M1. M7 is used 
in a current comparator, which compares the current through 
M6-M7 and the current through M8. The node Vlim_inh is 
utilised to limit the discharging current through M3. The node 
Inh_en indicates the inhibition signals, which are generated 
from the inhibition generator. The MOS capacitor, Cmem, is 
charged and discharged through M1-M2 and M3-M5 
respectively. If the pull-up current through M6-M7 is larger 
than the pull-down current through M8, which is controlled by 
Vmem, Vcmp is pulled to high; otherwise Vcmp is pulled down to 
the ground. Vcmp is transmitted to the output node through a 
transmission gate (M9-M10) and an inverter (M11-M12).   

Additionally, if the neuron is not selected, the node 
Col_sel is low and the node Col_sel_n is high, there is no 
current path from Vdd to ground, hence this design helps to 
reduce the power consumption of the circuit.  

III. SIMULATION RESULTS 

A. Software Simulation  
We have modelled our neuromorphic ADC with 50 

neurons in MATLAB. We simulated it with a sinusoidal input 
(1µA peak to peak, with 2µA offset) and observed the spikes 
from the neuronal array in each time step ( Fig. 5 (A)).  

  In the software simulation, we have considered fixed 
random noise, which occurs due to random device mismatches 
of the transistors during the fabrication process. We have 
considered 20% mismatch in the input current mirror circuit 
(Fig. 4) and 30% mismatch in the inhibition control circuit. 

 In Fig. 5 (A), we can see the distribution of spikes with 
respect to the input signal. Fig. 5 (B) shows the reconstruction 
of the input signal with 6% RMS error with respect to the 
input signal. We have reconstructed the desired input signal 
from the spike counts at each time step by using a simple low 

pass  filter, to demonstrate the neuromorphic ADC 
performance. We have used a systematic offset and a random 
component in the inhibition pulse to make a different 
inhibition for each neuron. We executed the simulation 30 
times to check the robustness of the system for different 
randomness, and achieved a mean RMS error of 7.264% and a 
standard deviation of 1.362%.  

B. Circuit Simulation  
To test the performance of this neuromorphic ADC 

architecture and the pulse width modulation methodology, we 
have simulated the circuit using the IBM 130nm technology in 
Spectre. To reduce the simulation time, we have simulated one 
row by ten columns of neurons, totalling ten neurons. All the 
neurons use the same size in the spice model. In this 
simulation, a saw tooth waveform was used as the input 
signal, which is fed into Exc_en. One cycle of the input 
current is increased from 0 A at 0s to 100 nA at 25 µs, and 
back to 0 A at 50 µs (Green line in Fig. 6) The input Vlim_exc is 
controlled by a current mirror, which is set to 800 nA. The 
input Vlim_inh is controlled by a current mirror, which is set to 4 
µA. The column shift rate is set to 33.3 MHz and the clock 
frequency of the inhibition generator is 333 MHz in the 
Verilog simulation. The output is the spike train from the ten 
neurons in different time steps. An average output spiking rate 
of 6.6 spikes/µs is achieved here (Blue lines in Fig. 6). The 
membrane voltage of each neuron is set to a different value in 
as the result of the pulse width modulation. Fig. 7 shows the 
reconstruction of the input analogue signal by using the 
neuronal spikes generated from the circuit simulation. We 
have presented input to the neural ADC as a ramp signal as 
shown in the red curve and observe the spike counts. We have 

 
Fig. 5. (A) Firing distribution of 50 neurons corresponding (blue 
dots) to sinusoidal input (red curve); (B) Input signal is shown in 
blue and red curve shows the reconstructed signal from the 
neuronal spike trains. 

 

 
Fig. 4. Schematic of the Integrate-and-fire neuron. 

 



applied curve fitting to the spike counts and 
obtained spikeCountNorm signal, which is normalised to its 
maximum value, shown in the black curve. We have 
calculated the compensation function by finding the inverse of 
the spikeCountNorm signal.  

IV. CONCLUSIONS 
We have presented a reconfigurable mixed-signal 

implementation of a neuromorphic ADC, which utilises FPGA 
implemented control module to scan the two-dimensional 
integrate-and-fire neuronal array, with a pulse width 
modulation algorithm to decohere the neuronal spikes. The 
software simulation results show satisfactory performance and 
circuit simulations using ten neurons show the even 
decoherence of the spikes from the ten neurons. It proves the 
feasibility of the architecture for the integrated circuit design.  
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Fig. 6. Simulation Results; Input Current (green line) and Spike Out (blue pluses). 
 

 

 
Fig. 7. Reconstruction; Input to the neural ADC (red 
curve); Curve fitting for normalised spike counts (black 
curve); reconstructed signal (blue circle). 
 

 


