
 1

A neuromorphic hardware architecture using the
Neural Engineering Framework for pattern

recognition
Runchun Wang, Chetan Singh Thakur, Tara Julia Hamilton, Jonathan Tapson, André van Schaik

The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia
mark.wang@uws.edu.au

Abstract—We present a hardware architecture that uses the
Neural Engineering Framework (NEF) to implement large-
scale neural networks on Field Programmable Gate Arrays
(FPGAs) for performing pattern recognition in real time.
NEF is a framework that is capable of synthesising large-scale
cognitive systems from subnetworks. We will first present the
architecture of the proposed neural network implemented
using fixed-point numbers and demonstrate a routine that
computes the decoding weights by using the online
pseudoinverse update method (OPIUM) in a parallel and
distributed manner. The proposed system is efficiently
implemented on a compact digital neural core. This neural
core consists of 64 neurons that are instantiated by a single
physical neuron using a time-multiplexing approach. As a
proof of concept, we combined 128 identical neural cores
together to build a handwritten digit recognition system using
the MNIST database and achieved a recognition rate of
96.55%. The system is implemented on a state-of-the-art
FPGA and can process 5.12 million digits per second. The
architecture is not limited to handwriting recognition, but is
generally applicable as an extremely fast pattern recognition
processor for various kinds of patterns such as speech and
images.

Keywords: neural engineering framework; time-multiplexing;
pattern recognition; pseudo inverse; MNIST; neuromorphic
engineering

1. Introduction
Neural networks have been proved to be powerful tools

for real world tasks, such as pattern recognition,
classification, regression, and prediction. However, their
high computational demands are not ideally suited to
modern computer architectures. This constraint has so far
often prohibited their use in applications that need real-time
control, such as interactive robotic systems. On the other
hand, scientists have been developing hardware platforms
that are optimised for neural networks over the past two
decades (Vogelstein et al., 2007; Boahen, 2006; Pfeil et al.,
2013; Wang et al., 2014d). However, these systems are not
capable of synthesising large-scale neural networks for
these real world tasks from subnetworks and therefore are
not very suitable, as pointed out by Tapson et al. (Tapson et
al., 2013).

Here, we present a generic hardware architecture that
uses the Neural Engineering Framework (NEF) (Eliasmith
and Anderson, 2003) to implement large-scale neural
networks on FPGAs, which are capable of processing up to

millions of pattern recognitions in real time. The NEF,
which was first introduced in 2003, is a framework that is
capable of building large systems from subnetworks with a
standard three-layer neural structure (the first layer contains
the input neurons; the second layer is a hidden layer, which
consists of a large number of non-linear neurons; and the
third layer is the output layer, which consists of linear
neurons). The NEF has been used to construct SPAUN,
which is the first brain model, implemented in software and
is capable of performing cognitive tasks (Eliasmith et al.,
2012). This demonstrates that the NEF is a powerful tool for
synthesising large-scale cognitive systems.

We have previously presented a compact neural core
architecture specifically for FPGA implementation of large
NEF networks (Wang et al., 2014a). In this paper, we
present an application that uses this neural core to build
pattern recognition systems. The outline for this paper is as
follows: Section 2.1 introduces the basic concepts of the
NEF; the algorithm and theory is presented in Section 2.2;
the hardware implementation is presented in Section 2.3;
the performance for different design choices will be
thoroughly compared in Section 3; in section 4 we compare
our work with other solutions and discuss future works.

2. Materials and methods
2.1 Background

In this section, we review the theoretical framework of a

Figure 1 | A typical NEF network. The stimulus X(t) is
encoded into a large number of nonlinear hidden layer
neurons N using randomly initialised connection weights.
The output of the system, Y(t), is the linear sum of the
weighted spike trains from the hidden neurons.

 2

typical NEF system, which encodes an input stimulus into a
spiking rate of neurons of a heterogeneous population and
decodes the desired function by linearly combining the
responses of these neurons. The topology of the NEF
network is illustrated in Figure 1. A NEF network performs
three tasks to calculate a desired function f(X):

 1. Encoding: An encoder will have a fixed random
weight (RW) for each hidden layer neuron, and multiplies
the input stimulus by this weight. The firing rate of
individual neurons is a nonlinear function of the input
stimulus weighted by the random weights. The parameters
of the neurons are also randomised, so that each neuron in
the hidden layer exhibits a distinct tuning curve. An
example of such tuning curves is shown in Figure 2.

2. Decoding: The activity, H, of the hidden neurons (i.e.
the spike rate of each neuron) can be measured over the
desired range of input values X. The output of each neuron
will be multiplied by their decoding weights such that WH =
f(X) = Y. Since this is a linear system, these weights can be
found by calculating W = YH+, where H+ is the Moore-
Penrose pseudo-inverse (Penrose and Todd, 1955) of H.

3. Averaging: The output of the system, Y(t), is the
linear sum of the weighted spike trains from the neurons.

2.2 Algorithm and Theory
2.2.1 Methodology

Recognition or classification of handwritten digits is a
standard machine learning problem, and in the form of the
MNIST database (Lecun et al., 1998) it has become a
benchmark problem. Hence, as a proof of concept, we have
used the proposed design framework to implement a digit
recognition system (Figure 3). Importantly, the same system
could be used for other pattern recognition applications. In
the MNIST database, the digits are represented as 28 × 28 =
784 pixels, and the training and testing dataset contain
60,000 and 10,000 digits, respectively. The system is

trained using the training dataset only and is subsequently
validated using the test dataset.

The proposed digit recognition system is a three-layer
feed forward neural network, consisting of 784 input layer
neurons (pixels), 8192 (8k) hidden layer neurons and ten
output layer neurons. The input layer neurons are connected
to the hidden layer neurons using randomly weighted all-to-
all connections. The hidden layer neurons are also
connected to the output-layer neurons using all-to-all
connections but with weights calculated using a
pseudoinverse operation.

In the digit recognition system, a single input digit
(28x28=784 pixels) is mapped onto a layer of input
neurons, which we refer to as a vector Img with a dimension
of 784×1. The Img matrix is multiplied by a matrix,
Random_weights, with a dimension of 8192×784. The
resultant vector, referred to as Vin with a dimension of
8192×1, is thus given by:

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡×𝐼𝐼𝐼𝐼𝐼𝐼 (1)

Each value in Vin is the sum of the randomly weighted
pixels, and is the stimulus for the corresponding neuron in
the hidden layer. Each neuron of the hidden layer responds
to its Vin value according to a distinct tuning curve (Figure
2). The output of the hidden layer neurons for each input
digit is collected in a matrix referred to as H with a
dimension of 8192×1. Finally, the response of the output
layer neuron is given by:

𝑌𝑌 = 𝑊𝑊×𝐻𝐻 (2)

where, W is the decoding weight (a matrix with a dimension
of 10×8192, ten columns for ten digits: 0-9) and Y (a
Boolean matrix with a dimension of 10×1) represents the
corresponding value of the input digit. For example, if the
input digit represents 2, then, during training, Y[2] will be
set to 1 and the other values in Y will be set to 0. Since this
is a linear system, the weights can be found by
calculating W = H+Y, where H+ is the pseudo-inverse of H.

The above description is for one single digit. For
training purposes, we used 60000 sample digits and hence
the dimensions of Img, Vin, H and Y will change to
784×60,000, 8192×60,000, 8192×60,000 and 10×60,000,
respectively. When we use the digits from the test dataset
with 10,000 digits, the dimensions of Img, Vin, H and Y will
change to 784×10,000, 8192×10,000, 8192×10,000 and
10×10,000, respectively. In the testing phase, the predicted
output Y will be the product of W*H and will be compared
with the expected output to obtain the error rate (the number
of unrecognised digits among 10000 test digits). We will
address the details of testing in Section 3.

2.2.2 Modelling

Our aim is to develop a fast hardware pattern
recognition system running in real time, rather than aiming
for the lowest test error. Thus, we have adopted a hardware-
driven method to implement our system, which will achieve
the best trade-off between performance and hardware
resources. This method will first consider the hardware

Figure 2 | Tuning curves maps input stimuli to spike
rates. For clarity, this figure only shows the tuning curve of
16 neurons. Each neuron in the neural layer has a distinct
tuning curve.

 3

constraints, and then all the building blocks will be
optimised.

For FPGA implementations, there will be a significant
difference in the hardware cost between fixed-point and
floating-point implementations, as the latter requires many
more digital signal processors (DSPs). More importantly,
the floating-point number is represented by 64-bits, which
would lead to a huge data storage requirement, which would
be a bottleneck for the system. Thus, we have implemented
our system using fixed-point numbers.

Before implementing the design in hardware, we have
modelled our system in Python, which is a popular software
programming language, using the fixed-point
representation. This will ensure that the software and the
hardware results are the same, and avoid any performance
drop or malfunctioning of the system in hardware due to
conversion from floating to fixed point numbers. The
models presented in the remaining part of this section were
all software models unless otherwise specified.

2.2.3 Input layer

The input layer will read digits from the MNIST
database and map them into the input layer pixels (one by
one). This task consists of not only converting the
dimension from 28×28 to 784×1 but also converting the
grey scale value (an 8-bit number that ranges from 0 to 255)
of the pixels to a binary value. The latter is a major
difference between our system and existing algorithms
(Tapson and van Schaik, 2013) (Lecun et al., 1998). This

conversion will reduce the hardware cost significantly with
a negligible performance loss, and will be presented in
detail in Section 2.3.2. We will compare the performance
differences in section 3.1. This conversion is carried out by
comparing the grey scale value with 0 - if it is larger than 0,
that pixel will be set 1; else it will be set to 0.

To guarantee that the pixels of each digit from the input
layer will be nonlinearly projected to the high dimensional
hidden layer, for each neuron in the hidden layer, the
encoder will first generate a uniformly distributed random
weight for each pixel of one input digit and then sum these
weighted pixels up for generating the stimulus. For
verification of our hardware system, the random weights
used in the software and in the hardware models should be
the same and produce identical results. In a software model,
random weights are generated using special routines, which
is difficult to implement on hardware.

One option is to use a look up table (LUT) in the FPGA
to store the random weights generated by the software
model. The major drawback of this solution is that it
requires a significant amount of memory, which scales
linearly with number of input neurons and hidden layer
neurons. For FPGA implementations, the most efficient way
to generate random numbers is to use linear feedback shift
registers (LFSRs), as we have previously used to implement
a randomly weighed all-to-all connectivity in a spiking
neural network (Wang et al., 2014c). Based on that work,
we have developed an encoder, which uses LFSRs to
perform the nonlinear projection. We have implemented the

Figure 3 | System Topology. The inputs are the pixels; they are connected to a higher-dimensional hidden layer with 8k
neurons, using randomly weighted connections. The output layer consists of linear neurons and the output layer weights are
solved analytically using the pseudoinverse operation.

 4

same LFSR encoder in software to ensure that the random
weights are identical in both implementations. We have
highly optimised the encoder for hardware implementation,
and details of this will be presented in Section 2.3.

2.2.4 Rate neuron

The NEF intrinsically uses spike rates to calculate the
weights, and low-pass filters to sum the weighted output
spikes to implement the desired function. In contrast, we
have implemented our neurons as non-spiking neurons that
compute their firing rate directly. If these neurons were to
be implemented as leaky-integrate-and-fire neurons on
FPGA, as we have done previously (Wang et al., 2014c),
their average firing rates would have to be measured for
each value of the input stimulus to compute the decoding
weights. This method is quite inefficient and inflexible, as
we would have to repeat the measurements each time the
parameters of the neurons change. Another drawback is that
spiking neurons running in real time would not be able to
accurately communicate their firing rate in a short time
period, e.g., 1ms. This would significantly limit their usage
in real time applications. Using non-spiking neurons, their
actual firing rate can be communicated immediately after
presenting the stimulus to the neurons. This feature is quite
important for applications that need real-time control, such
as interactive robotic systems.

In a system with non-spiking neurons, the system will
not compute correctly if these neurons cannot reproduce the
same firing rate as the one used to calculate the decoding
weights. In other words, the computed firing rate must be
repeatable for a given input value. Based on these
requirements, we proposed to compute the firing rate of
each neuron using its index in the array together with the
stimulus value to produce a ‘broken-stick’ nonlinearity
using the following algorithm:

FOR N_index in (0, N_A-1):

 IF N_index < N_A/2:

 T = Max_Stim - (Stim + 4×N_index)

 ELSE:

T = Stim + 4×N_index

F_rate = max(2 × N_index × T / N_A , 0)

END

Here F_rate represents the firing rate of the neuron as a
result of the input stimulus, N_index represents the index of
the neuron in the neural core, and T is calculated as shown
for the different neurons. N_A represents the size of the
hidden layer, Max_Stim represents the maximum value of
the stimulus and Stim represents the current value of the
input stimulus using an integer in the range of [0,
Max_Stim) to code for an input range of [-1, 1). Figure 4
shows the tuning curves of a set of N_A = 64 of the
proposed fixed-point neurons, using Max_Stim = 255. The
transfer function is thus a nonlinear function of the stimulus
since the value of F_rate cannot go negative. Our system
requires the stimulus to be nonlinearly encoded into the
firing rate of the neuron and it is hardware intensive to use
digital circuits to implement conventional nonlinear
functions such as tanh. Instead, this piecewise linear
function can be easily implemented using a single 9-bit
fixed-point multiplier. We will present its implementation in
detail in section 2.3.3.

2.2.5 Hidden layer

We refer to the set of 64 neurons as a neural core, which
will be used as the standard building block for our digit
recognition system. Multiple neural cores can easily be
combined to build real-time large-scale neural networks
using our design framework. Furthermore, the development
cycle of large-scale neural networks will be significantly
shortened as there is no requirement for measurement of the
firing rate anymore, since each neural core has the same set
of known tuning curves.

The hidden layer was implemented with 128 identical
neural cores, for a total of 8192 (8k) neurons and
8192×(784+10) ≈ 6.5M synaptic connections. This hidden
layer size has achieved the best trade-off between
performance and memory usage and we will compare the
performance differences in Section 3.2. Given an input
image, the encoder will generate, via the random weight
projection, a different Vin for each neuron in each core,
even if each core contains identical neurons. In other words,
even though neuron[0] in neural core[0] and neuron[0] in
neural core[1] have the same tuning curve as a function of
Vin, the are highly likely to get different Vin so that their
firing rates will be different too.

2.2.6 Regression

The decoding weights are obtained by
calculating W = H+Y, where H+ is the pseudoinverse of H.
However, the pseudo-inverse of the matrix H of size 60000
× 8192 requires a huge amount of memory and
computational time. We have previously developed an
online pseudoinverse update method (OPIUM) (Tapson and
van Schaik, 2013), which is an incremental method to
compute the pseudoinverse solution to the regression

Figure 4 | The tuning curves of the proposed fixed-point
non-spiking neuron. This figure shows the tuning curve of
64 neurons.

 5

problem, which requires significantly less memory. Hence,
we use this method here to compute the decoding weights.
We chose to use a 6-bit resolution for the decoding weights,
to obtain the best trade-off between performance and
memory usage. We will address this in details in section
3.1.

The pseudoinverse method only gives the best solution
with the lowest square root error for any given H matrix,
i.e., any given set of random weights; it does not necessarily
achieve the lowest test error for the MNIST data set. So we
adopted a regression method to find the best seed, which
will be used by the encoder to generate random weights,
and will in turn change the H matrix. In this way, we can
obtain the lowest possible test error in our system. Figure 5
shows the flow of this regression method. It uses a
simplified version of OPIUM, called OPIUM lite (Tapson
and van Schaik, 2013), which is a fast online method for
calculating an approximation to the pseudoinverse. It is
significantly quicker than the full-scale OPIUM, but will
find output weights resulting in a slightly worse test error.
OPIUM lite is used with different random seeds, i.e., for
different random weight vectors, until a seed is found with a
target error below a desired threshold. After that, the full
scale OPIUM is used to compute the decoding weights with
that seed. As there is no guarantee that OPIUM lite will be
able to achieve a target error below the desired threshold, a
time-out mechanism is introduced. In our system, this time-
out will be activated when the regression has run for 1000
seeds. If a time-out happens we simply use the seed that has
so far resulted in the lowest error and then use the full scale
OPIUM to compute the decoding weights.

2.3 Hardware implementation
2.3.1 Topology

To efficiently implement the system on an FPGA, we
use a time-multiplexing approach (Cassidy et al., 2011;
Wang et al., 2013, 2014d, 2014c, 2014b, 2015; Thakur et
al., 2014), which leverages the high-speed digital circuit.
State-of-the-art FPGAs can easily run at a clock speed of
266MHz (clock period 3.75ns). Thus, we can exploit time-
multiplexing approach to simulate 218 neurons (256k,
powers of two are preferable as they optimise memory use
for storage) in ~1 millisecond by only implementing one
physical neuron on an FPGA. We refer to these neurons as
time-multiplexed (TM) neurons. This means that on every
clock cycle, a TM neuron will be processed. Each TM
neuron is updated every 256k/266MHz ≈ 943 µs while a
sub-millisecond resolution is generally acceptable for neural
simulations.

The time-multiplexing approach is however constrained
by its data storage requirement. The on-chip SRAM is
limited in size (usually only tens of MBs). Due to
bandwidth constraints it is difficult to use off-chip memory
with the time-multiplexing approach, as new values need to
be available from memory every clock cycle to provide
real-time simulation. Furthermore, the architecture of the
system will be more complex when using off-chip memory
because it needs a dedicated memory controller.
Nevertheless, using off-chip memory promises the ability to
implement much larger networks and we will investigate
this option for future designs. However, we chose to use on-
chip memory for the current work to keep the architecture
simple.

Figure 5 | The flow of the proposed regression method.

 6

Figure 6 shows the topology of the FPGA
implementation of the system, which consists of an input
layer (the encoder), a hidden layer with 128 neural cores
and an output layer with 10 neurons. The encoder and the
hidden layer are both implemented with the time-
multiplexing approach and Figure 6b shows their internal
structure. It consists of a physical encoder, a physical
neuron, a global counter and a weight buffer. The global
counter processes the time-multiplexed (TM) encoders and
neurons sequentially. The decoding weights of the physical
neuron are stored in the weight buffer. For simplicity, let us
assume that each TM encoder and TM neuron are processed
in only one clock cycle. This means that in every clock
cycle, a TM encoder will generate the stimulus for an input
digit, and the corresponding TM neuron will generate a
firing rate with that stimulus and then multiply it with the
decoding weights (ten numbers for ten digits obtained by
using the OPIUM). The input digit will not change and will
remain static until all the TM neurons finish their
processing. The output of every TM neuron will be ten
weighted firing rates, each of which will be accumulated by
its corresponding output neuron. Using a pipelined
architecture, the result from calculating one time step for a
TM encoder and neuron only has to be available just before
the turn of that TM encoder and TM neuron comes around
again. The above description assumes that it only takes one
clock cycle to process one TM encoder and TM neuron,
while this timing requirement is quite difficult to meet in a
practical design. We will address this issue in detail in next
section.

2.3.2 Physical encoder

The encoder will generate a uniformly distributed
random weight for each pixel of the input digit, and then
sum these weighted pixels to generate the stimulus for each
neuron in the hidden layer. We have pre-processed the input
digit by converting grey-scale value of each pixel to a

binary value. This saves significant hardware resources in
the FPGA, since otherwise we would need 784 multipliers
to compute the multiplication between all pixels and their
corresponding random weights. Each binary pixel is used to
control a 2-input multiplexer, one is connected to its
corresponding random weight and the other is tied down to
zero. If the value of a pixel is high, that corresponding
random weight will be accumulated for the generation of
stimulus for a hidden layer neuron.

The major challenge in implementing the encoder in
hardware using the time-multiplexing approach is to meet
the timing requirement. We need to sum all the 784
weighted pixels in 3.75 ns, since each TM neuron needs to
be processed in one clock cycle. Moreover, this operation
will require 784 adders, which will cost a significant
amount of hardware resources. The introduction of
pipelines will mitigate the critical timing requirement, but
will need even more adders. As a compromise we chose to
process each TM encoder and TM neuron in a time slot of
four clock cycles. So the encoder will perform this sum
operation in four cycles, each of which will sum 784/4=196
weighted pixels. This modification not only mitigates the
critical timing requirement, but also reduces the number of
adders that are needed. The price paid is that the time-
multiplexing rate has to be divided by four. Hence, we can
only time-multiplex 64k neurons rather than 256k neurons.

Figure 7 shows the structure of the physical encoder,
which consists of an input buffer, a global counter, 49
random weight (RW) generators (each implemented with an
20-bit LFSR), 196 2-input multiplexers and a sum up
module. When an input digit arrives, it is stored in the input
buffer. In each time slot, the global counter sends that stored
digits to multiplexers for generating the weighted pixels.
The lowest 196 bits are sent in the first clock cycle (of that
time slot) and then the higher 196 bits in the next clock

Figure 6 | FPGA implementation of the proposed system. (a) The system topology;(b) The internal structure of the time-
multiplexed system.

 7

cycle, one by one, and highest 196 bits in the fourth clock
cycle.

Each RW generator generates a 20-bit random number,
which is divided into four 5-bit random signed numbers.
Hence, 49 RW generators will provide totally 49x4 = 196 5-
bit random weights, each is sent to its corresponding
multiplexer. All these LFSRs will reload their own initial
seed (obtained using the pseudoinverse method) on the
arrival of an input digit. After that, it keeps generating
random numbers until a new input digit arrives. In this way,
we can guarantee that the encoder will generate the exact
same set of random weights (for each incoming digit) with
any given seed. This “on the fly” generation scheme
reduces the usage of the memory significantly, as there is no
requirement for storing the random weights anymore – only
the seeds need to be stored.

The accumulator module sums the 784 weighted pixels
(in four clock cycles) for generating the stimulus for that
TM neuron. A naive implementation would need a 196-
input 5-bit parallel adder and create a large delay (~20 ns).
To mitigate this critical timing requirement, we use a 2-
stage pipeline, which consists of fourteen 14-input 5-bit
parallel adders and one 14-input 9-bit parallel adder. Since
it is a pipelined design, the stimulus (for each TM neuron) is
still being generated every time slot (with a latency of two
clock cycles).

2.3.3 Physical neuron

The rate neuron achieves a significant reduction in
memory usage, since it computes its firing rate with its
index, the input stimulus and fixed parameters, none of
which need memory access. Memory access is only needed
to read the decoding weights. In our previous work (Wang
et al., 2014a), the physical neuron has already been

implemented with a single 9-bit multiplier, which computes
the F_rate and multiplies it with one and only one decoding
weight. In the digit recognition system implemented here,
the neuron needs to multiply F_rate with ten decoding
weights (for ten digits: 0-9). A naïve implementation would
instantiate ten identical neurons, each with one decoding
weight (for each output neuron), and would cost 10
multipliers. The whole operation would require 11
multiplications. Since the time slot consists of four clock
cycles, we can distribute these 11 multiplications to these
four clock cycles so that only 11/4=3 multipliers will be
needed. Based on this strategy, the neuron has been
efficiently implemented with three identical 9-bit
multipliers as shown in Figure 8. The number of the
implementable multipliers is usually one of the bottlenecks

Figure 8. The structure of the physical neuron

Figure 7. The structure of the physical encoder

 8

of large-scale FPGA/ASIC design.

The multiplier’s inputs A and B are 9 bits wide and the
output result is 18 bits wide. All of the three multipliers will
need four clock cycles to process the algorithm. For
multiplier [0], the first cycle computes the F_rate, which is
represented by a 7-bit number, by multiplying N_index and
T; the second cycle latches F_rate at input A of the
multiplier; the third and fourth cycle multiplies F_rate with
the decoding weight [0] and [1], respectively. For multiplier
[1], the first, second, third and fourth cycle multiplies F_rate
with the decoding weight [2],[3],[4] and [5] respectively.
For multiplier [2], the first, second, third and fourth cycle
multiplies F_rate with the decoding weight [6],[7],[8] and
[9] respectively. Again, since it is a pipelined design, the
output of each TM neuron is updated only once in its time
slot (with a latency of four clock cycles).

2.3.4 Output layer

The output layer consists of ten neurons (Figure 6) that
will linearly sum the results of all the 8k TM neurons. Since
it is a time-multiplexed system, this sum is just an
accumulation of the outputs of the TM neurons of each time
slot and the computational cost can be reduced in
magnitudes. Hence, the implementation of each output
neuron will only need a register and an adder. When all the
8k neurons have all been processed, the index of the output
neuron with the maximum value will be sent out as the
result, which indicates the most likely input digit. After
that, the values of the ten output neurons are cleared.

2.3.5 Utilisation

The system was developed using the standard ASIC
design flow, and can thus be easily implemented with state-
of-the-art manufacturing technologies, should an integrated
circuit implementation be desired. A bottom-up design flow
was adopted, in which we designed and verified each
module separately. Once the module level verification was
complete, all the modules were integrated together for top-
level verification. We have successfully implemented 128
proposed neural cores, yielding 8k neurons, on an Altera
Cyclone V FPGA (on a Terasic Cyclone GX starter kit).
The design uses less than 6% of the hardware resources
(with the exception of the RAMs, Table I). Note that this
utilisation table includes the circuits that carry out other
tasks such as the JTAG interface.

3. Results
The results presented here will focus on how different

design choices will affect the performance of the proposed

system as our goal is to develop a hardware system running
in real time, rather than exploiting an algorithm that is as
accurate as possible. The performance results were obtained
using the full test set of 10,000 handwritten digits after
training on the full 60,000 digit training set, unless
otherwise specified. The results presented in Section 3.1-3.2
were all obtained using the software (Python) models. The
results presented in section 3.3 were obtained from the
hardware implementation.

3.1 Comparison across different configurations

TABLE I

Device utilisation Altera Cyclone 5CGXFC5C6F27C7

Adaptive Logic Modules
(ALMs)

RAMs DSPs

2162/29080 480k/4.5M	 3/450

Figure 9. (a) and (b) The histogram of the error rate for
configuration 1 and configuration 2; (c) the normalised
histogram of the difference between the paired errors
(blue) and sample T distributions modelling the data
(red); (d) the distribution of the estimated mean of the
difference data.

 9

Compared to our previous work (Tapson and van Schaik,
2013), we have made three major modifications: the grey-
scale pixel in the input images were replaced by black &
white (binary) pixels; tanh neurons in the hidden layer were
replaced by rate neurons; and 64-bit floating-point numbers
for the decoding weights were replaced by 6-bit fixed-point
numbers. We investigated the effects of these modifications
using four configurations: configuration 1 was the
configuration used in our previous work (Tapson and van
Schaik, 2013); configuration 2 used black and white images;
configuration 3 used black and white images and rate
neurons instead of tanh neurons; and configuration 4 had all
three modifications. The hidden layer consisted of 8k
neurons in all four configurations.

For each configuration, 100 test runs were conducted,
each with a different random seed. The same set of 100
seeds was used for all four configurations, so that the
encoder will generate the same random weights. Since the
goal of this exercise was simply to investigate the impact of
the three modifications on performance, rather than to find
the best possible performance, we only used the first five
steps of the regression method, i.e., we only used OPIUM

lite to calculate the decoding weights and the test error. This
significantly reduces the simulation time needed for these
tests while still providing a fair comparison between the
four configurations.

We first investigated the effect of using the binary
values in the input layer. We compared the performance
result between the one using the grey-scale values and
binary values (see Figure 9). The top two panels show a
histogram of the number of errors out of 10,000 test
patterns. Given the skewed nature of the two error
distributions, rather than simply reporting p-values to
indicate the statistical significance of this difference, we
have chosen to display the full distribution here. Because
the same set 100 random weight vectors was used for each
configuration, we can determine a paired difference
between the two configurations, shown as a histogram in
Figure 9c. We then modelled the distribution of the
difference of errors using a non-central T distribution,
which is optimal for modelling distributions that are
approximately Gaussian but contain outliers. We followed
the Bayesian estimation method according to Kruschke
(Kruschke, 2012) using Markov Chain Monte Carlo

Figure 11. (a) The histogram of the error rate for
configuration 4; (b) the normalised histogram of the
difference between the paired errors (blue) and sample
T distributions modelling the data (red); (c) the
distribution of the estimated mean of the difference
data.

Figure 10. (a) The histogram of the error rate for
configuration 3; (b) the normalised histogram of the
difference between the paired errors (blue) and sample
T distributions modelling the data (red); (c) the
distribution of the estimated mean of the difference
data.

 10

simulation. We simulated the Markov Chain for 110,000
steps and discarded the first 10,000 steps as a burn in
period. Figure 9d shows the distribution of the 100,000
mean values for the T distribution modelling the data, and
the red curves in Figure 9c show 50 examples of the T
distribution with parameters (mean, standard deviation, and
a normality parameter – see (Kruschke, 2012)) taken at
random from the Markov Chain.

From the distribution of the mean value for the
difference data (Figure 9d), we can see that configuration 2
results in 59.5 more errors on average. If we define a
difference of 10 or fewer errors as a region of practical
equivalence (ROPE), or, in other words, we consider as
insignificant a change of 10 or fewer errors out of 10,000
tests, i.e., a change of less than 0.1%, we note that the 95%
highest density interval (HDI) of the distribution of the
mean of the difference of errors is outside the ROPE, and
therefore we conclude that changing the input images from
grey scale to binary values results in a small but significant
increase in error of around 0.6%.

Next, we investigated the effect of using the rate
neurons in the hidden layer. The distribution of errors for
this configuration (configuration 3) is shown in Figure 10a.
This should be compared with configuration 2 (Figure 9b)
and their paired difference is shown in Figure 10b. Figure
10c shows the distribution of the mean of the difference in
errors between configuration 3 and configuration 2. It
shows that changing from tanh neurons to rate neurons
increases the number of errors by approximately 18.5.
However, this difference is not strongly significant, as the
95% HDI is not entirely outside the ROPE, indicating that a
difference within the region of practical equivalence is
amongst the possible mean values. Finally, we investigated
the effect of using limited-resolution decoding weights.
Figure 11a shows the distribution of errors for this
configuration and the difference between configuration 3
and configuration 4 is close to zero (Figure 11b). In fact the
distribution of the mean of the error difference is entirely
within the ROPE, indicating that somewhat surprisingly
there is no significant loss in performance when using 6-bit
fixed-point output weights instead of floating point weights.

The performance drop between configuration 1 and 4
was merely 0.8%. We can therefore conclude that, in this
digit recognition system, the modifications that we made
achieved significant reductions in terms of hardware cost
with a minimal drop in performance.

3.2 Size of the hidden layer

In this scenario, we used configuration 4 from the
previous section and changed the hidden layer size in the
range from 1k to 16k neurons. For each size, ten test runs
(each with a different random seed) were conducted. Again,
to reduce the testing time, we used OPIUM lite to calculate
the decoding weights and then calculate the test error.

The median error over 10 runs (Figure 12) for the
hidden layer with 1k, 2k, 4k, 8k, 12k and 16k neurons was
14.5%, 10.4%, 6.96%, 5.01%, 4.47% and 4.33%

respectively. It is clear that the error decreases with the
number of hidden layer neurons, although with a
diminishing return. Since the system used the time-
multiplexing approach and rate neurons, the hardware cost
of a single TM neuron is almost negligible. The memory
required by the decoding weights is linearly proportional to
size of the hidden layer and is thus the bottleneck of the
system. To achieve a good balance between the desired
accuracy and memory, we chose to implement the hidden
layer with 8k rather than 16k neurons.

3.2 System performance

To explore the best performance that the proposed
system can achieve, 1000 runs were carried out using the
full regression method (Figure 5) with different random
seeds. The lowest error achieved with lite and full version
of OPIUM is 4.52% and 3.45%, respectively. After that, the
decoding weights (obtained with full version of OPIUM)
were loaded into the FPGA board for real time digit
recognition. The pixels of input digits were converted to
binary values in software and a Python-based front-end
client software sent the selected test digit to the FPGA via
JTAG interface. Since the system runs at 266MHz and the
hidden layer contains 8k neurons, each of which has a time
slot of four clock cycles, the processing time for one input
digit will be 8k×4/266MHz ≈ 120 µs, yielding 1s/120µs ≈
8k digit recognitions per second. Due to the fact that our
system only used 8k out of 64k neurons in one single TM
neuron layer, the maximum number of the digit recognitions
that can be processed by one TM neuron layer is ~64k per
second. The system used less than 6% of the hardware
resources (with the exception of the RAMs), multiple TM
neuron layers can be instantiated to run in parallel. It is
practical to scale this system to process millions of digit
recognitions in one second. We will address this in details
in section 4.2.

4. Discussion
4.1 Comparison with other solutions

The work reported here constitutes the basis for building
real-time, large-scale, general purpose hardware pattern
recognition systems using the NEF, hence we are mainly
interested in the trade-off between the scale, the

Figure 12. Error rates as a function of the number of
neurons in the hidden layer.

 11

performance and the hardware cost. We will concentrate on
comparing our work with the solutions that were developed
for similar goals, rather than the solutions that are extremely
optimised for achieving the lowest error rate of MNIST
although they cannot be efficiently implemented on
hardware.

The IBM TrueNorth system is a general-purpose system
for building large-scale neural networks running in real time
(Merolla et al., 2014). When it was programmed for digit
recognition, it achieved a result of 8.06% error rate in the
10000 test set of the MNIST with 13 cores, each of which
consisted of TM 256 spiking neurons and needs ~96k bits
memories (Esser et al., 2013). Hence, our system achieved a
much lower error rate while with significantly fewer
hardware resources, especially the memories (Table II).
Regarding the processing speed, their system needs 20 time
steps (each one is 1 ms) to process one digit, whereas our
system needs only 120 µs (approximately 167 times
speedup). Moreover, while their system consists of a feature
extractor that clusters and extracts features from data, our
system is feature-less, hence can be easily configured for
different input data without feature extractions. The
TrueNorth system however has much more applications
besides pattern recognition task, as compared to our system.

The Minitaur, which is an event–based neural network
accelerator, achieved an error rate of 8% on a deep spiking
network with 1785 neurons (Neil and Liu, 2014). Since the
scheme it used is a variant of the time-multiplexing
approach, which only needs very few neurons to be
physically implemented, the cost of one single neuron is
also negligible and the bottleneck again is the memory.
Each of the neuron used by the Minitaur needs 73 bits
memories and the connection weight needs 16 bit
memories. Our neuron needs 60 bit memories for the
decoding weights. The processing time of the Minitaur for
one digit is 0.152s (table II), which is approximately 1300
times slower than our system.

4.2 Future work
Since the larger the scale is, the more pattern

recognitions can be carried out, our future work will focus
on scaling up the network that we have presented here. It is
a scalable design as it is a fully digital implementation. The
number of TM hidden neurons implemented by a single
physical neuron will increase linearly with the amount of
available memory, as long as the multiplexing scale keeps
the time resolution within the biological time scale. The
number of physical neurons will increase linearly with the
number of available ALMs.

In the following calculation, we will use the digits
recognition system as a metric and different applications
will require different amounts of hardware resources while
still using the same topology. We can calculate the
theoretical maximum network size on a state-of-the-art
FPGA board, such as the Terasic DE5 board containing an
Altera Stratix V (5SGXEA7N2F45C2) FPGA with ~230k
ALMs, two DDR3 SDRAMs and four QDRII+ SRAMs.
One single TM hidden layer requires ~1600 ALMs, which

is mainly used by the encoders. Hence, the maximum
number of the physical hidden neurons that can be
implemented is 230k/1600 ≈ 143. The memory requirement
of one single TM hidden neuron layer is 64k×60bits =
3840k bits. The on-chip SRAM, which is 52M bits, can be
used to implement up to 13 TM hidden neuron layers. To
further scale up the system, we need to use external
memories. The bandwidth requirement is indeed a
bottleneck for the time-multiplexing approach, as new
values need to be available from memory every four clock
cycles.

The maximum theoretical bandwidth of one DDR3
SDRAM memory and one QDRII+ SRAM memory on the
DE5 board is 512 bits and 72 bits @266MHz, respectively.
The DDR3 memory, in general, can only achieve an
efficiency of 70% (of the theoretical bandwidth) as it will
need flow control, which takes into consideration the bus
turn around time, refresh cycles, and so on. The maximum
number of neuron arrays is ((512bits × 2 × 70% +
72bits×4)×4)/60bits ≈ 67. Adding the ones using the on-
chip SRAM, the theoretical maximum number of neuron
layers is 80, yielding 64k×80 = 5.12M neurons. As the
maximum number of the digit recognitions that can be
processed by one TM neuron layer is ~64k per second, the
maximum number of the digit recognitions that can be
processed by the system with 80 parallel layers is therefore
5.12M per second.

The programmability of the FPGA, especially the
decoding weights, makes the integration of the system with
the desired pattern recognition applications seamless.
However, the advantages of running large-scale networks in
real-time are strongly reduced if such neural networks take
a long time to compute the decoding weights. Hence,
another major improvement is to speed up this
computationally extensive task. One promising solution is
to implement the OPIUM on FPGA, since this algorithm is
an adaption procedure without the requirement of hundreds
of Gigabyte RAMs and is quite friendly for hardware
implementation. Running OPIUM in real time makes it
possible to upgrade the system to be a true turnkey solution
for pattern recognition in real world. In addition, since the
proposed system does not need feature extraction, it could
be used for any other pattern recognition tasks such as
speaker recognition, natural language processing and so on.

TABLE II

Comparison with other solutions

 Error Computation
time

Resources

Minitaur 8% 0.152 s 155k bits

TrueNorth 8.06% 20 ms 1.248M bits

This work 3.45% 120 µs	 480k bits

 12

5. Acknowledgment
This work has been supported by the Australian

Research Council Grant DP140103001. The support by the
Altera university program is gratefully acknowledged. This
work was inspired by the Capo Caccia Cognitive
Neuromorphic Engineering Workshop 2013, 2014 and
Telluride Neuromorphic workshop 2013.

6. References

Boahen, K. (2006). Neurogrid: emulating a million neurons in the cortex.
Conf. Proc. IEEE Eng. Med. Biol. Soc. Suppl, 6702.
doi:10.1109/IEMBS.2006.260925.

Cassidy, A., Andreou, A. G., and Georgiou, J. (2011). Design of a one
million neuron single FPGA neuromorphic system for real-time
multimodal scene analysis. 2011 45th Annu. Conf. Inf. Sci. Syst.,
1–6. doi:10.1109/CISS.2011.5766099.

Eliasmith, C., and Anderson, C. (2003). Neural Engineering:
Computation, Representation, and Dynamics in Neurobiological
Systems. Boston: MA: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y.,
Tang, C., and Rasmussen, D. (2012). A large-scale model of the
functioning brain. Science 338, 1202–5.
doi:10.1126/science.1225266.

Esser, S. K., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D.,
Amir, A., Arthur, J., Cassidy, A., Flickner, M., Merolla, P., et al.
(2013). Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores. in The 2013
International Joint Conference on Neural Networks (IJCNN)
(IEEE), 1–10. doi:10.1109/IJCNN.2013.6706746.

Kruschke, J. K. (2012). Bayesian Estimation Supersedes the t Test. J. Exp.
Psychol. Gen. 142, 573–603. doi:10.1037/a0029146.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–
2324. doi:10.1109/5.726791.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., Jackson, B. L., Imam, N., Guo, C., Nakamura, Y., et
al. (2014). A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science (80-.).
345, 668–673. doi:10.1126/science.1254642.

Neil, D., and Liu, S. (2014). Minitaur, an Event-Driven FPGA-Based
Spiking Network Accelerator. IEEE Trans. Very Large Scale
Integr. Syst., 1–1. doi:10.1109/TVLSI.2013.2294916.

Penrose, R., and Todd, J. A. (1955). A generalized inverse for matrices.
Math. Proc. Cambridge Philos. Soc. 51, 406–413.
doi:10.1017/S0305004100030401.

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A,
Schmuker, M., Brüderle, D., Schemmel, J., and Meier, K. (2013).
Six networks on a universal neuromorphic computing substrate.
Front. Neurosci. 7, 11. doi:10.3389/fnins.2013.00011.

Tapson, J. C., Cohen, G. K., Afshar, S., Stiefel, K. M., Buskila, Y., Wang,
R. M., Hamilton, T. J., and van Schaik, A. (2013). Synthesis of
neural networks for spatio-temporal spike pattern recognition and
processing. Front. Neurosci. 7, 153. doi:10.3389/fnins.2013.00153.

Tapson, J., and van Schaik, A. (2013). Learning the pseudoinverse
solution to network weights. Neural Netw. 45, 94–100.
doi:10.1016/j.neunet.2013.02.008.

Thakur, C. S., Hamilton, T. J., Tapson, J., van Schaik, A., and Lyon, R. F.
(2014). FPGA Implementation of the CAR Model of the Cochlea.
in IEEE International Symposium on Circuits and Systems, 1853–
1856. doi:10.1109/ISCAS.2014.6865170.

Vogelstein, R. J., Mallik, U., Vogelstein, J. T., and Cauwenberghs, G.
(2007). Dynamically reconfigurable silicon array of spiking
neurons with conductance-based synapses. IEEE Trans. Neural
Netw. 18, 253–65. doi:10.1109/TNN.2006.883007.

Wang, R., Cohen, G., Stiefel, K. M., Hamilton, T. J., Tapson, J., and van
Schaik, A. (2013). An FPGA Implementation of a Polychronous
Spiking Neural Network with Delay Adaptation. Front. Neurosci.
7, 14. doi:10.3389/fnins.2013.00014.

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014a). A
compact neural core for digital implementation of the Neural
Engineering Framework. in BIOCAS2014
doi:10.1109/BioCAS.2014.6981784.

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014b). A
compact reconfigurable mixed-signal implementation of synaptic
plasticity in spiking neurons. in 2014 IEEE International
Symposium on Circuits and Systems (ISCAS) (IEEE), 862–865.
doi:10.1109/ISCAS.2014.6865272.

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014c). An
FPGA design framework for large-scale spiking neural networks.
in 2014 IEEE International Symposium on Circuits and Systems
(ISCAS) (Melboune: IEEE), 457–460.
doi:10.1109/ISCAS.2014.6865169.

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2014d).
A mixed-signal implementation of a polychronous spiking neural
network with delay adaptation. Front. Neurosci. 8, 51.
doi:10.3389/fnins.2014.00051.

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2015). A
neuromorphic implementation of multiple spike-timing synaptic
plasticity rules for large-scale neural networks. Front. Neurosci. 9,
1–17. doi:10.3389/fnins.2015.00180.

