
An Online Learning Algorithm for Neuromorphic 
Hardware Implementation 

Chetan Singh Thakur, Runchun Wang, Saeed Afshar, Gregory Cohen, Tara Julia Hamilton, Jonathan Tapson and 
André van Schaik 

Email: chetansingh84@gmail.com 
 
 

Abstract— In this paper, we propose a Sign-based Online 
Update Learning (SOUL) algorithm, which may be used in any 
artificial neural network that learns weights by minimising a 
convex cost function. The SOUL algorithm is a simple weight 
update rule that employs the sign of the hidden layer activation 
and the sign of the output error, which is the difference between 
the observed output and the predicted output. This algorithm is 
easily implementable in hardware using simply a counter and an 
XOR gate. Here, we present results of using SOUL to train an 
analogue Integrated Circuit implementation of the Extreme 
Learning Machine (ELM) for various regression tasks. We also 
present results for a Field Programmable Gate Array (FPGA) 
implementation of a digital ELM system trained using the SOUL 
algorithm on the MNIST handwritten digit database, and 
demonstrate its ability to perform digit recognition tasks in real 
time. The accuracy of the SOUL algorithm in the digit 
recognition task is lower than state-of-the-art machine learning 
algorithms, however, the SOUL learning rule is extremely simple 
and area efficient for hardware implementation. We envisage 
that it will find applications in low power hardware accelerators 
for big data machine learning applications. 

Keywords—Neuromorphic Engineering; Adaptive Hardware; 
Neural Networks; Pattern recognition, on-chip learning.  

I.  INTRODUCTION  
Most learning algorithms developed for neural networks are 

designed, tested and benchmarked in software on sequential 
processors and optimised either for performance or for 
biological plausibility and not for their ease of implementation 
in custom hardware [1]–[6]. Machine learning for analysing big 
data is one of the most important workloads in both data 
centres and mobile platforms. Even state-of-the-art 
CPUs/GPUs are not sufficiently fast to perform real-time 
processing in big data applications and their power 
consumption is a major concern [7]. This gap in the design 
space serves as a motivation for an integrated algorithm-
hardware design paradigm that takes full advantage of the 
hardware characteristics to implement more efficient and better 
performing hardware-based neural network systems. In this 
context, we propose an online learning algorithm called the 
Sign-based Online Update Learning (SOUL) algorithm, which 
is optimised for hardware implementation. We have derived the 
SOUL algorithm from the OPIUM algorithm proposed in our 
previous work [8]. Incorporating online learning algorithms for 
real-time applications imposes speed and memory constraints 
that can only be met by implementing simple learning 
architectures on silicon. The algorithm is very simple and can 
be easily implemented using standard digital logic cells, 
requiring only counters and XOR gates. 

In this paper, we implement the SOUL algorithm to 
perform generic function regression and classification tasks in 
ELM-based networks. We tested the performance of the 
algorithm for regression tasks in an analogue system referred as 
a TAB (Trainable Analogue Block) [9][10]. For classification 
tasks, we employed a previously developed digital system [11] 
for the MNIST digit recognition task [12].  

This paper is organised as follows: section II describes the 
ELM framework, we present the OPIUM learning algorithm in 
section III, the derivation of the SOUL algorithm from OPIUM 
in section IV, and hardware implementation of the SOUL 
algorithm in section V. MNIST digit recognition results are 
shown in section VI, simulation learning results of the TAB 
framework implemented in Python and transistor circuits are 
presented in section VII, and conclusions in section VIII. 

II. ELM FRAMEWORK  
An ELM framework [13] consists of a feed-forward 

structure of three layers of neurons – input, hidden, and output 
(Fig. 1). An input is projected to a layer of nonlinear hidden 
neurons of a much higher dimensionality via random 
connection weights. Additionally, we have introduced a fixed 
and distinct systematic offset (Fig. 1), oi, for each hidden layer 
neuron of the ELM framework, which ensures that all the 
neuronal tuning curves are distinct and independent. For the 
analogue TAB system used in this work, the hidden neurons 
employ a hyperbolic tangent (tanh) tuning curve to perform a 
nonlinear operation of its input and can be easily implemented 
with a few transistors. Our digital FPGA system uses a 
‘broken-stick’  nonlinearity (Fig. 8) [11], which is similar to 
rectified linear unit (ReLU) activation function often used in 
deep neural networks [14]. Using the SOUL algorithm, the 
output weights that describe a linear relationship between the 
hidden layer and the output layer can be learnt to approximate a 
desired function as a regression solution, or to perform a 
classification task for the input-output relationship in the ELM 
framework.  

III. OPIUM LEARNING ALGORITHM 
In a previous work, we have presented an incremental 

method called Online Pseudo Inverse Update Method 
(OPIUM) to calculate the pseudoinverse solution of the weight 
optimisation problem in an online fashion [8]. The solution to 
the network weights is calculated in a manner similar to the 
batch method of singular value decomposition (SVD) method 
[15] often used to calculate the pseudoinverse. 



 
 
Fig. 1. Architecture of the ELM framework with systematic offset. 

Three layers of neurons are connected in a feed-forward structure. The 
connections from the input layer neurons/nodes to the non-linear hidden 
neurons are via random weights and controllable systematic offsets, O1 to 
OM. The hidden layer neurons are connected linearly to the output layer 
neurons via trainable weights. The output neurons compute a linearly 
weighted sum of the hidden layer values. Adapted from [9]. 

Algorithm: Let us consider a three layer feed-forward 
neural network, having L number of hidden neurons, as shown 
in Fig. 1. Let g(.,.,.) be a real-valued function so that g(wi

(1)x + 
bi

(1) + oi
(1)) is the output of the ith hidden neuron with random 

bias bi
(1) ϵ ℝ corresponding to the input vector x ϵ ℝm and the 

randomly determined weight vector wi
(1) = (wi1

(1),… wim
(1)), 

where wis
(1) is the weight of the connection between the ith 

hidden neuron and sth neuron of the input layer. Systematic 
offset oi

(1) ϵ ℝ is added to ensure that each neuron exhibits a 
distinct tuning curve. The output function of the network f(.) is 
given by: 

f(x) = Ʃ
L

i=1
 wi

(2) g(wi
(1) x + bi

(1) + oi
(1))     (1) 

where, wi
(2) = (w1i

(2),… wki
(2)) ϵ ℝk is the weight vector where 

wji
(2) ϵ ℝ is the weight connecting the ith hidden neuron with 

the jth neuron of the output layer. For the nth training pattern, 
the ith hidden neuron activation is given by: 

hin = g(wi
(1) xn + bi

(1) + oi
(1))                       (2) 

where hn ϵ ℝLx1. The output weights between L hidden 
neurons and K output layer nodes [8], wn

(2) ϵ ℝKxL can be 
updated as: 

wn
(2) = wn-1

(2) + (yn - wn-1
(2)hn)ϕn                             (3) 

where, ϕn ϵ ℝ1xL is given by:                     

ϕn = (h
T
n θn-1)/(1 + h

T
nθn-1hn)                                  (4) 

θn ϵ ℝLxL is the inverse of the autocorrelation matrix of the 
hidden layer activation.  

 θn = θn-1 - θn-1hn
 ϕn               (5) 

This algorithm is equivalent to the Recursive Least Squares 
algorithm (without forgetting factor) used in adaptive filters 
[16]. In the following section, we derive the SOUL algorithm 
from the OPIUM algorithm, by introducing some 
simplifications to make it hardware friendly. 

IV.  SIGN-BASED ONLINE UPDATE LEARNING (SOUL) 
ALGORITHM  

In the ELM framework, the input is randomly projected to 
higher dimensions using random weights, random biases and 
controllable systematic offsets, and then nonlinearly 
transformed using the hidden neuron activation function. In a 
digital system, random input weight vectors can be generated 
using the LFSR logic [17], while in an analogue system they 
may arise due to random mismatch of transistors [9]. All these 
operations ensure that the tuning curves of the hidden neurons 
across all input patterns are not correlated to each other and 
that the output range of all the hidden neurons is very similar. 
This led us to propose a simplification of the OPIUM 
algorithm, in which we simply assume that the autocorrelation 
matrix, θn

-1 = εI, where I is the identity matrix and ε is a small 
positive value. This makes the algorithm provide an inexact, 
but useful solution to the pseudoinverse and means that we 
never need to calculate θn. The algorithm then simplifies to: 

ϕn = h
T
n/(ε + h

T
nhn)                                          (6) 

and,         wn
(2) = wn-1

(2) + (yn – wn-1
(2)hn)ϕn                       (7) 

= wn-1
(2) + en ϕn                                 (8) 

where, en is the estimation error. This algorithm is 
equivalent to the ε-Normalised Least Mean Squares algorithm 
in adaptive filtering [18], where ε plays the role of the 
regularisation constant. 

In (6), the denominator is a scalar quantity. For each new 
input pattern, the denominator changes due to hn and it acts as a 
variable gain and normalising factor, so we can write (6) as:  

ϕn = h
T
n/Nvar                                                (9) 

The normalising factor, Nvar in (9), is a variable and would 
have to be calculated for each connection. The normalising 
factor influences the convergence time of the output error. We 
have investigated this option, as it provides, in theory, the best 
result in terms of the desired input-output mapping. However, 
it is likely to lead to a circuit per output weight that is too large 
to be practical, particularly as an accurate analogue-to-digital 
converter (ADC) is needed for each weight update. A further 
simplification for the hardware implementations uses a 
constant gain: 

ϕn = h
T
n/N                                                   (10) 

so that (8) reduces to:  

wn
(2) = wn-1

(2) + en(h
T
n/N )                           (11) 

wn
(2) ϵ ℝKxL corresponds to the output weights between L 

hidden neurons and K output layer nodes. In the case of a 
single output layer node, wn

(2) ϵ ℝL and en ϵ ℝ would be scalar.  

This stochastic-gradient version is equivalent to the basic 
Least Mean Squares (LMS) method used in adaptive filtering 
[18], with 1/N representing the learning rate parameter.  

Even with these simplifications, (11) requires 
multiplications of two variables (en, hn) for each weight 
connection, which would still need a large circuit per 
connection. Instead, we simplify the weight update rule even 
further, by simply incrementing or decrementing the weight by 
a small amount depending on the product of the sign of the 
error en, and the sign of the hidden layer activation hn. This 
yields the SOUL rule: 

wn
(2) = wn-1

(2) + sign(en) sign(h
T
n)/N                            (12) 

and is equivalent to sign-sign LMS in adaptive filtering 
[18]. This rule only needs a single bit multiplication and can be 
implemented with an XOR gate.  



In the following section, we discuss the hardware 
implementation of the SOUL algorithm.  

V. HARDWARE IMPLEMENTATION OF THE LEARNING 
ALGORITHM 

The algorithm is implemented via a Digital Learning Block 
(DLB) developed using digital standard cells for both analogue 
and digital systems. The DLB calculates and updates the 
magnitude and polarity of the weight for each new training 
pattern. There is a DLB block for each connection between a 
hidden neuron and an output neuron.  

A negative sign is represented by ‘1’, and a positive sign by 
‘0’. Thus the product of the signs in (12) can be easily 
implemented with a standard logical XOR gate. The digital 
weights can then be stored in a counter that counts up or down 
one unit depending on the product of the signs. This implicitly 
defines the normalisation factor N as 2n, where n is the number 
of bits used for the counter. This counter effectively stores the 
magnitude of the weight (magW) and the sign of the weight 
(signW). To control the magnitude of the increment/decrement, 
a 3-bit register (add_no) is used, which can take any value 
from 0 to 7. It allows us to achieve a trade-off between 
resolution and the learning rate. A high value of add_no will 
result in fast learning but with low resolution weights, while a 
small value of add_no will give a higher resolution in 
representing the output function but will increase the learning 
time. A useful option is to decrease the value of add_no during 
training, which will reduce the training time while maintaining 
a better final resolution.  

The pseudocode for the SOUL algorithm is below. 

BEGIN  
add_count = 1<<add_no; 
 (@ each posedge clk) 
 decr = signE ⊕ signH; 
  If (signW ⊕ decr): 
  magW = magW - add_count;  
 Else: 
  magW = magW + add_count;  
END  
 
where, ⊕ represents the XOR operation and << represents 

the left shift operation. Note that the weight changes at each 
training cycle.  

VI. REGRESSION RESULTS 
We have tested the analogue TAB system for regression 

task with 13 bit weights. The TAB is based on the ELM 

framework and is described in detail along with circuit 
descriptions in our previous work [9]. The hidden neurons of 
the TAB use a hyperbolic tangent (tanh) tuning curve to 
perform a nonlinear operation of its input and can be easily 
implemented with a few transistors (Fig. 7A). The hidden and 
output layers are connected via DLB controlled output weight 
circuit (Fig. 7B). Here, we present the simulated learning 
results of the TAB framework using Python and circuit 
simulations.  

A. Numerical (Python) simulations 
We configured the TAB framework for a single input and a 

single output (SISO) and a hidden layer of 100 neurons. We 
modelled the input of the TAB as a voltage variable and the 
output as a current variable in the range of nanoamperes. The 
TAB architecture was trained for various functions (Y = f(X)), 
ranging from simple functions such as cube and sine, to 
complex functions such as sinc. For the simulations, the input 
range was normalised between [-1, 1] V, and was quantised 
using 200 points. During training, we presented the (X, Y) 
training pairs in random order and repeated this for a defined 
number of training epochs. For example, 10 epochs would 
mean presenting 10x200 = 2000 iterations. Upon the 
completion of training, we presented only the input to the 
system and observed the learned output. We verified the 
learning performance by calculating the error as the difference 
between the observed output and the predicted output. Fig. 2 
shows the learned output of the TAB in the testing phase for 
various regression tasks, as well as the target output and the 
error. Additionally, we show the convergence of the error in 
the training phase, which depends on the complexity of the 
function. Empirically, the more changes in the sign of the 
derivative of the function (more wiggles), the more time it 
takes to minimise the error. Convergence of the error (Fig. 2, 
Ib-IIIb) was analysed by keeping track of the number of 
training examples needed to reach a pre-determined level of 
accuracy.  

1) Error vs number of bits in the output weight: The RMS 
error as a function of the number of bits used for the output 
weights, for y = sinc(6πx) for a network with 100 hidden nodes 
is shown in Fig. 3. Again, these are the results of 10 
simulations with different random weights from the input to the 
hidden nodes. From about 8-bits onwards, the variance is 
negligibly small, and the RMS (Root Mean Square) error 
becomes almost totally independent of the random weights. 
Increasing the number of bits per weight is a matter of 
diminishing returns, and 11-bits seem sufficient, even to learn 
this difficult function. 

 



 
 
Fig. 2. Python simulations of the TAB for a SISO system. The TAB system with a hidden layer of 100 neurons was trained to learn (I) Sine, (II) Sinc, and 

(III) a Complex function (Y = sin(x) + x3 + sin(x)/x)  using online supervised learning with a training dataset containing a set of samples, where each sample was a 
pair consisting of an input (Vin, black line) and a desired output value (Iout, red curve). In (a), the learned function (dashed curve) approximates the correct output 
value (red curve) for the test input and the error (green curve) is close to 0. In (b), the error converges to a minimum over the learning process. 

 
 

Fig. 3. The percentage RMS error versus the number of bits/weight 
used for the output weights for the function y = sinc(6πx). The error bars 
show the standard deviation. 

 
 
Fig. 4. Plot of percentage error as a function of the number of 

hidden neurons, for random and ordered training. Training data were 
presented to the TAB with a varying number of hidden neurons in a 
random or ordered manner, and the errors were compared. 

2) Stochasticity of training results in better performance: 
Stochasticity in the SOUL algorithm arises from the random 
presentation of training data to the TAB. We compared the 
performance of the learning algorithm for drawing training 
samples in an ordered manner versus in a random manner for a 
fixed number of training iterations. We trained the TAB to 
learn the sinc function (with RMS = 28.6) for different 
numbers of hidden neurons, and compared the percentage 
RMS error with the target RMS for both the cases. As shown 
in Fig. 4, random shuffling of the training pairs results in a 
better learning performance as compared to no shuffling. The 
difference in percentage error becomes significantly 
pronounced when the number of hidden neurons is high (>60). 

 
3) Error convergence time depends upon the number of 

hidden neurons and training epochs: We have observed in our 
simulations that the number of epochs required to converge to 
a given error threshold is inversly proportional to the number 
of hidden neurons in the circuit. In addition, the TAB requires 
a minimum number of hidden neurons to encode the input 
stimulus in order to be able to converge to a given error 
threshold. Similarly, there is a minimum number of epochs 
required for error convergence, and this is not affected by 

increasing the number of hidden neurons. Fig. 5 shows the 
number of iterations versus the number of hidden neurons for 

the sinc function. We have used an error threshold of 3% 
(RMS for sinc function = 28.6), and measured the total 
number of epochs required to reach this threshold with the 
given number of hidden neurons. In Fig. 5, the red dot shows 
the minimum number of hidden neurons required as 26, below 
which we cannot achieve accuracy within the given threshold. 

 
4) Variable step size: The SOUL algorithm provides an 

additional option to change the step size in the learning rule, 
which helps to converge to the minimum error at a much faster 
rate. In Fig. 6, we have compared the learning performance 
with a constant step size versus a variable step size for the sinc 
function. We can change the value of add_no during the 
training (pseudocode, Section V), which will reduce the 
training time significantly. In Fig. 6, the add_no for the 
variable step size was changed from 3 (up to iteration 2000) to 
0 (from iteration 2000 till last). This resulted in the error 
converging much faster than using a fixed step size (w.r.t. 
add_no = 0 i.e add_count = 1, as in pseudococde), while 
achieving the same accuracy.  

Overall, the simulation results of the training suggest that 
the system can be successfully trained to perform various 
regression tasks. Also, we have identified key features for 
optimal performance of the SOUL algorithm in a TAB. 



 
 
Fig. 5. Plot of the number of epochs versus the number of hidden 

neurons for the sinc function. Red dot represents the minimum number 
of hidden neurons required to achieve an error threshold of 3%. 

 
Fig. 6. Error evolution for the sinc function using a fixed update 

rate and a variable update rate using the SOL algorithm in a TAB. The 
add_no variable (as explained in section V) for the variable rate was 
changed from 3 to 0 at iteration 2000.  

B. Circuit Simulations 
After obtaining encouraging results from the Python 

simulations, we implemented the TAB framework (Fig. 1) 
using transistor circuits. We implemented the hidden neuron  
tanh model using a differential pair circuit, and the output 
weight logic using a splitter circuit (Fig. 7A, B). The splitter 
circuit is used along with the DLB to implement the SOUL 
algorithm in the TAB system. A detailed description of the 
hidden neuron and splitter circuits is given in our previous 
work [9]. The DLB is explained in detail in section V. For each 
training pattern, the DLB corresponding to each hidden neuron 
generates a 13-bit binary number. Each bit of this binary 
number is used as a binary switch, which controls the current in 
each splitter branch. We have used 65nm transistor models for 
transistor level circuit simulations. In the simulation, there are a 
total of only 20 hidden neurons and each neuron exhibits a 
different systematic offset Vref, which results in a different 
nonlinear tuning curve for each neuron and is thus useful for 
learning. The SOUL method uses the sign of the hidden 
neuron, which is shown in Fig. 7A as the signH port. For each 
training pattern presented to the system at a time, a predicted 
output is computed. Based on the target and the predicted 
output, the sign of the error signal feeds back to the DLB 
corresponding to each hidden neuron. Based on the sign of the 
error (signE) and the sign of each hidden neuron (signH), the 
output weight corresponding to each hidden neuron gets 
updated for each training pattern. We have trained the TAB 
network in a single input and a single output configuration with 
20 hidden neurons to learn the cube function. The TAB is 
trained only for a few iterations due to the extremely long 
simulation time (it takes 10 hours to run a simulation of 10 ms) 
and the fact that the memory requirement grows linearly with 
simulation time. During the final 0.4 ms, training was turned 
off and only the input was presented to the circuit to test how 
well the function was learned. Much of the ‘noise’ in the first 
10 ms (Fig. 7C) is thus the result of changes in the output 
weights during training. This circuit simulation shows that the 
TAB can be successfully implemented using transistor circuits 
and trained for various learning tasks, but it is likely that more 
than 20 hidden neurons will be needed to learn this function, 
and more than 25 epochs to fully train the circuit. 

VII. CLASSFICATION RESULTS 
We have previously developed a digital system for offline 

learning using this framework [11]. We employed the same 
system here to apply the SOUL algorithm and we have verified 
the performance of the SOUL algorithm for digit recognition 
tasks on the MNIST database [12]. In the MNIST database, the 
digits are represented as 28×28 = 784 pixels, and the training 
and the testing datasets contain 60,000 and 10,000 digits, 
respectively. We have employed our digital system, called 
Neuromorphic Pattern-recognition System (NeuPS), which is 
based on the ELM principles and is similar to the TAB 
framework, but implemented on FPGA. Currently, NeuPS has 
been developed for binary images, so we first converted the 
MNIST greyscale images into binary images. The NeuPS is a 
three-layer feed forward neural network, consisting of 784 
input layer neurons (pixels), and a large number of hidden layer 
neurons and ten output layer neurons. In the description below, 
we will use 8192 hidden neurons for simplicity, however, we 
have characterised the results for various numbers of hidden 
neurons in the result section. The input layer neurons are 
connected to the hidden layer neurons using randomly 
weighted all-to-all connections. The random weights in the 
NeuPS are generated on-the-fly using an LFSR pseudo random 
number generation circuit. The hidden layer neurons are also 
connected to the output layer neurons using all-to-all 
connections, but with output weights calculated using the 
SOUL learning algorithm. In the digit recognition system, a 
single nth input digit (28×28=784 pixels) is mapped onto a layer 
of input neurons, which we refer to as vector xn ϵ ℝ784x1. The 
random input weight matrix is wrnd

(1) ϵ ℝ8192x784. The input to 
the hidden neurons for an nth input digit, vn ϵ ℝ8192x1, is thus 
given by: 

vn = wrnd
(1) xn   

Each value in vn is the sum of the randomly weighted 
pixels, and is the stimulus for the corresponding neuron in the 
hidden layer. The tuning curve of the hidden layer neurons are 
implemented using ‘broken-stick’ nonlinearity and discussed in 
the next section (Fig. 8). The decoding weights w(2) ϵ ℝ10x8192 
are updated according to the SOUL rule and the output vector y 
ϵ ℝ10x1 represents the predicted value of the input digit. 



 
 

Fig. 7. Circuit simulation of the TAB circuit to learn y = x3. A. Hidden neuron implements tanh nonlinearity. Each hidden layer node (red box) in the 
TAB framework is represented by this circuit. B. Splitter circuit, which is used along with a digital logic block to implement the SOL algorithm. Each weight 
block (green box) of the TAB framework consists of the splitter circuit and a digital logic block (not shown). C. Simulation results. x-axis shows the learning 
time in ms (millisecond) and y-axis shows the output current in µA (microampere). At 10 ms, training was turned off and then learning was tested in the last 
0.4 ms (green box). Noise in the first 10 ms is a result of changes in the output weights during training. 

The above description is for a single digit. Here, we used 
60,000 sample digits in the training phase and 10,000 sample 
digits in the testing phase. In the testing phase, the predicted 
output Y is compared with the expected output to obtain the 

error rate (i.e. the number of digits recognised wrongly among 
10,000 test digits). To efficiently implement the NeuPS on an 
FPGA, we use a time-multiplexing approach [19]–[23], which 
leverages the high-speed digital circuit. State-of-the-art FPGAs   



 
 

Fig. 8 The tuning curves of 64 hidden neurons in the NeuPS. 

 

 
Fig. 9. Accuracy as a function of the number of hidden layer neurons, training epochs and output weight bit size. 

can easily run at a clock speed of 266MHz (clock period 
3.75ns). Here, we have modelled the NeuPS FPGA into 
MATLAB using fixed points, and all the analysis and results 
reported here are from the fixed point MATLAB model of the 
NeuPS.   

A. Hidden neuron tuning curves 
The hidden neuron in the TAB framework implements the 

tanh nonlinearity, which is hardware intensive to implement 
using digital circuits. Instead, in the NeuPS, ‘broken-stick’ 
nonlinearity has been implemented as a hidden layer activation 
function. Fig. 8 shows the tuning curves of a set of 64 hidden 
layer neurons. The transfer function is thus a nonlinear function 
of its input, since the value of the output of neurons cannot be 
negative. Instead, this piece-wise linear function can be easily 
implemented using a single 9-bit fixed-point multiplier. Since 
the time-multiplexing approach has been used, one physical 
neuron can simulate 256k neurons in one millisecond in the 
NeuPS [11].  

B. Results 
We have investigated the accuracy of the NeuPS for 

different values of bit size of the output weights and number of 
hidden neurons. As the number of hidden layer neurons grows, 
the total number of output weights will grow and subsequently 
the memory storage of these weights will increase. Thus, we 

trained the NeuPS for bit size ranging from 13 bits to 17 bits, 
but always used only the 6 Most Significant Bits (MSB) once 
the system was trained. This leads to a significant savings in 
memory use.  

The SOUL algorithm uses a fixed step size (normalising 
factor N), which influences the convergence time. For a large 
N, the convergence time would be longer, thus it might need 
more training patterns to reach the maximum accuracy for a 
given number of hidden neurons. In contrast, a smaller N will 
decrease the convergence time, but the system may not achieve 
the best accuracy for that number of hidden neurons. In Fig. 9, 
we show the results obtained from testing the NeuPS by 
varying the output weight bits resolution (normalising factor 
N), the number of hidden neurons and the number of training 
epochs (one training epochs = 60000 patterns). The best result 
of 95.05% is achieved with 16384 (214=16K) hidden neurons 
with 15 bits output weight bits during training and 3 training 
epochs of the database. In Fig. 10, we show the mean of 50 
different seeds of random weights for the curve corresponding 
to the best value of normalising factor of Fig. 9 for different 
numbers of hidden neurons. The SOUL algorithm achieves the 
best trade-off between accuracy and feasibility of hardware 
implementation. In a real world application where the amount 
of training data is large, an online learning algorithm such as 
the SOUL algorithm, which is simple and area efficient, is a 
good choice for ‘Big Data’ applications.  

VIII. CONCLUSIONS 
We have derived and developed a sign-based online update 

learning (SOUL) algorithm based on the OPIUM algorithm. 
We have tested the performance of the SOUL for MNIST digit 
recognition tasks. Also, we have analysed and trained an 
analogue TAB for various regression tasks and observed the 
evolution of error. Our analysis demonstrates satisfactory 
learning performance using the SOUL algorithm with a very 
simple hardware implementation. We have also analysed the 
relation between the number of hidden nodes and the 
convergence of error. We have also implemented a TAB in a 
single input and single output configuration using transistors, 
and shown that it learns successfully using the SOUL method. 
Our proposed SOUL algorithm minimises a cost function based 
on a least squares solution and may find applications in  



 
 
Fig. 10. Mean accuracy over 50 trials as a function of hidden neurons and 

wNorm (normalising factor). 

adaptive hardware neural architectures. The speed and power 
consumption of today’s CPUs/GPUs are greatly challenged by 
the need of information analytics on big data platforms. Recent 
advances in sensing technology further aggravate the situation 
with a big volume of data. Therefore, power and area efficient 
algorithms similar to the SOUL on custom hardware are 
essential to accelerate learning and classification on a chip 
under stern area and power constraints. 

REFERENCES 
[1] P. Mazzoni, R. A. Andersen, and M. I. Jordan, “A more biologically 

plausible learning rule for neural networks.,” Proceedings of the 
National Academy of Sciences of the United States of America, vol. 
88, no. 10, pp. 4433–4437, 1991. 

[2] J. C. Tapson, G. K. Cohen, S. Afshar, K. M. Stiefel, Y. Buskila, R. 
M. Wang, T. J. Hamilton, and A. van Schaik, “Synthesis of neural 
networks for spatio-temporal spike pattern recognition and 
processing,” Frontiers in neuroscience, vol. 7, p. 153, Jan. 2013. 

[3] P. J. Werbos, “Backpropagation through time: What it does and how 
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 
1990. 

[4] A. A. Saputra, J. Botzheim, I. A. Sulistijono, and N. Kubota, 
“Biologically Inspired Control System for 3-D Locomotion of a 
Humanoid Biped Robot,” IEEE Transactions on Systems, Man, and 
Cybernetics: Systems, vol. PP, no. 99, pp. 1–14, 2015. 

[5] T. Li, S. Duan, J. Liu, L. Wang, and T. Huang, “A Spintronic 
Memristor-Based Neural Network With Radial Basis Function for 
Robotic Manipulator Control Implementation,” IEEE Transactions 
on Systems, Man, and Cybernetics: Systems, vol. 46, no. 4, pp. 582–
588, Apr. 2016. 

[6] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: 
A comprehensive overview,” IEEE Transactions on Systems, Man, 
and Cybernetics: Systems, vol. 45, no. 3, pp. 385–398, 2015. 

[7] R. Brown, A. to S. Energy, I. C. F. Incorporated, E. R. G. 

Incorporated, and U. S. E. P. Agency, “Report to Congress on 
Server and Data Center Energy Efficiency: Public Law 109-431,” 
Lawrence Berkeley National Laboratory, 2008. 

[8] J. Tapson and A. van Schaik, “Learning the pseudoinverse solution 
to network weights,” Neural networks : the official journal of the 
International Neural Network Society, vol. 45, pp. 94–100, Sep. 
2013. 

[9] C. S. Thakur, T. J. Hamilton, R. Wang, J. Tapson, and A. van 
Schaik, “A neuromorphic hardware framework based on population 
coding,” in 2015 International Joint Conference on Neural 
Networks (IJCNN), 2015, pp. 1–8. 

[10] C. S. Thakur, R. Wang, T. J. Hamilton, J. Tapson, and A. van 
Schaik, “A Low Power Trainable Neuromorphic Integrated Circuit 
That Is Tolerant to Device Mismatch,” IEEE Transactions on 
Circuits and Systems I: Regular Papers, vol. 63, no. 2, pp. 211–221, 
Feb. 2016. 

[11] R. Wang, C. S. Thakur, T. J. Hamilton, J. Tapson, and A. van 
Schaik, “A neuromorphic hardware architecture using the Neural 
Engineering Framework for pattern recognition,” arXiv:1507.05695, 
Jul. 2015. 

[12] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 
2010. 

[13] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning 
machine: Theory and applications,” Neurocomputing, vol. 70, no. 
1–3, pp. 489–501, Dec. 2006. 

[14] V. Nair and G. E. Hinton, “Rectified Linear Units Improve 
Restricted Boltzmann Machines,” Proceedings of the 27th 
International Conference on Machine Learning, no. 3, pp. 807–814, 
2010. 

[15] D. Kalman, “A Singularly Valuable Decomposition: The SVD of a 
Matrix,” The College Mathematics Journal, vol. 27, p. 2, 1996. 

[16] S. O. Haykin, “Chapter 13,” in Adaptive Filter Theory, Pearson; 5 
edition, 2013, p. 912. 

[17] P. Alfke, “Efficient Shift Registers, LFSR Counters, and Long 
Pseudo-Random Sequence Generators,” TechNotes, vol. 1996, pp. 
1–6, 1996. 

[18] A. H. Sayed, Adaptive Filters, vol. 5. 2008. 
[19] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A 

mixed-signal implementation of a polychronous spiking neural 
network with delay adaptation.,” Frontiers in neuroscience, vol. 8, 
no. March, p. 51, Jan. 2014. 

[20] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A 
neuromorphic implementation of multiple spike-timing synaptic 
plasticity rules for large-scale neural networks,” Frontiers in 
Neuroscience, vol. 9, no. May, pp. 1–17, 2015. 

[21] C. S. Thakur, T. J. Hamilton, J. Tapson, A. van Schaik, and R. F. 
Lyon, “FPGA implementation of the CAR Model of the cochlea,” in 
2014 IEEE International Symposium on Circuits and Systems 
(ISCAS), 2014, pp. 1853–1856. 

[22] C. S. Thakur, R. M. Wang, S. Afshar, T. J. Hamilton, J. C. Tapson, 
S. A. Shamma, and A. van Schaik, “Sound stream segregation: a 
neuromorphic approach to solve the ‘cocktail party problem’ in real-
time,” Frontiers in Neuroscience, vol. 9, no. September, pp. 1–10, 
Sep. 2015. 

[23] C. S. Thakur, J. Wright, T. J. Hamilton, J. Tapson, and A. van 
Schaik, “Live demonstration: FPGA implementation of the CAR 
model of the cochlea,” in 2014 IEEE International Symposium on 
Circuits and Systems (ISCAS), 2014, pp. 461–461. 

 
 


	I.  Introduction
	II. ELM Framework
	III. Opium Learning Algorithm
	IV.  Sign-based Online Update Learning (SOUL) Algorithm
	V. Hardware Implementation of the Learning Algorithm
	VI. Regression Results
	A. Numerical (Python) simulations
	1) Error vs number of bits in the output weight: The RMS error as a function of the number of bits used for the output weights, for y = sinc(6πx) for a network with 100 hidden nodes is shown in Fig. 3. Again, these are the results of 10 simulations wi...
	2) Stochasticity of training results in better performance: Stochasticity in the SOUL algorithm arises from the random presentation of training data to the TAB. We compared the performance of the learning algorithm for drawing training samples in an o...
	3) Error convergence time depends upon the number of hidden neurons and training epochs: We have observed in our simulations that the number of epochs required to converge to a given error threshold is inversly proportional to the number of hidden neu...
	4) Variable step size: The SOUL algorithm provides an additional option to change the step size in the learning rule, which helps to converge to the minimum error at a much faster rate. In Fig. 6, we have compared the learning performance with a const...

	B. Circuit Simulations

	VII. Classfication Results
	A. Hidden neuron tuning curves
	B. Results

	VIII. Conclusions
	References


