
A neuromorphic hardware framework based on
population coding

Chetan Singh Thakur, Tara Julia Hamilton, Runchun Wang, Jonathan Tapson and André van Schaik

The MARCS Institute, University of Western Sydney, Kingswood 2751, NSW, Australia
Email: C.SinghThakur@uws.edu.au

Abstract—In the biological nervous system, large

neuronal populations work collaboratively to encode
sensory stimuli. These neuronal populations are
characterised by a diverse distribution of tuning curves,
ensuring that the entire range of input stimuli is
encoded. Based on these principles, we have designed a
neuromorphic system called a Trainable Analogue Block
(TAB), which encodes given input stimuli using a large
population of neurons with a heterogeneous tuning curve
profile. Heterogeneity of tuning curves is achieved using
random device mismatches in VLSI (Very Large Scale
Integration) process and by adding a systematic offset to
each hidden neuron. Here, we present measurement
results of a single test cell fabricated in a 65nm
technology to verify the TAB framework. We have
mimicked a large population of neurons by re-using
measurement results from the test cell by varying offset.
We thus demonstrate the learning capability of the
system for various regression tasks. The TAB system
may pave the way to improve the design of analogue
circuits for commercial applications, by rendering
circuits insensitive to random mismatch that arises due
to the manufacturing process.

Keywords—Neuromorphic Engineering; Analogue
Integrated Circuit Design; Stochastic Electronics; Neural
Network Hardware; Neural Population Coding

I. INTRODUCTION
Semiconductor technology has evolved from discrete

single transistors of the 1960’s to multi-billion-transistor
microprocessors and memory chips of today. This
exponential growth in circuit density follows the famous
Moore’s law, which states that the density of transistors
doubles every two years [1]. In the last two decades, IC
technology has advanced to nanometre fabrication process
technologies. Many physical and quantum mechanical
effects that were not relevant in larger process technologies
become significant in nanometre designs [2]. These effects
lead to problems such as high levels of electrical noise,
process mismatch, interconnect bottlenecks, high element
failure rate, and power limitations. The result is a serious risk
of suboptimal designs and thus poor performance and poor
manufacturing yield. These issues render traditional
approaches to analogue IC design inadequate and create

significant challenges in the field of design technology.
Additionally, analogue circuits are more prone to failure in
nanometre designs when compared to digital circuits because
of their dependence on slight variations of the process,
severe impact of noise and leakage currents, influence of
external unknown fields and susceptibility to slight changes
in layout. These effects may be minimised by increasing
device size, however, this increases the size of an IC and
hence can be prohibitive in large system-on-chip (SOC)
designs [3][4].

 Neurobiological processing systems, such as the brain,
are remarkable computational devices. Despite their slow
speed, they outperform today’s modern computers in various
tasks such as vision, audition, and motor control. Issues such
as cell death and non-homogeneity of neurons in a
neurobiological system can be considered equivalent to
transistor failure and device mismatch in an IC, respectively.
Over the course of evolution, biological systems have
evolved to cope with these issues to ensure survival. A set of
neurons works collectively and distributively to encode
information in the nervous system. Each neuron in such a
population has a distribution of responses over some set of
input stimuli. The individual neuronal firing rates vary
nonlinearly according to the input, and allow decoding of the
input value by linearly combining the response of many
neurons [5]. In a similar manner, the neuromorphic system
that we have described encodes the input stimulus using a
large pool of nonlinear neurons, and decodes the desired
function by linearly combining responses of neurons.
Neuromorphic systems offer an attractive alternative to
conventional technology, and have enormous potential for
future artificial information processing and behaviour
systems [6].

Various applications such as sensor networks, military
applications and aerospace require electronic systems with
small area, high speed, small weight, and low power
consumption. Thus, it is imperative to implement customised
neural networks in hardware rather than in software [7].
Analogue neural network hardware is preferable to its digital
counterpart in systems requiring small area, low power
consumption. Moreover, the former is advantageous owing
to high speed resulting from asynchronous updating, and
ease of interface with a large set of real world sensors, which
are themselves analogue. However, a major drawback of
analogue implementation is random device mismatch. We
have addressed this issue in our work and exploited random

device mismatch as a constructive feature, instead of
avoiding it as a bane.

In this paper, we present a novel IC architecture called a
Trainable Analogue Block (TAB) that incorporates
neuromorphic principles such as low power consumption,
fault tolerance and adaptive learning. To our knowledge, our
work is the first of its kind to present measurement results of
the TAB, which employs random device mismatch to
implement a neural network. The TAB implementation is
based on the LSHDI (Linear Solutions of Higher
Dimensional Interlayers) framework [8], which will be
explained in detail in section III. We present the
measurements of the building blocks of our TAB hardware
implementation in section IV, algorithm for offline learning
in section V, mathematical proof for importance of
heterogeneity of tuning curves in section VI, and capability
of the TAB to learn various regression tasks in section VII.
Section VIII presents a comparison of our work to previously
published works and the conclusions of our study.

 In contrast to existing analogue circuits, TAB
architecture embraces random device mismatch. Thus, the
reduced device matching in newer technologies serves as an
advantage, rather than something that needs to be engineered
out of the design. A further significant advantage of this
approach is that once manufactured, the same TAB can be
reused for many different purposes. The same architecture
can be used in different manufacturing technologies, as it can
be trained after fabrication to perform a desired operation.
This will lead to a significantly reduced design cycle for
analogue circuits, with an associated reduction in design
cost, and a speed-up of the technological progress. The TAB
framework may pave the way for a new kind of circuit
paradigm, called stochastic electronics, which will use
hardware variability to achieve their engineering goal [9].

II. NEURAL POPULATION CODING
Biological neurons encode input stimuli such as motion,

position, colours, and sound into neuronal firing. The
encoded information is represented by a set of neurons in a
collective and distributed manner, referred as population
coding. In population coding, the firing rate or the rate code
of individual neurons governs information encoding.
Population coding is robust to neuronal cell damage, as the
information is encoded across a large set of neurons [10]. As
examples of rate coding, neurons in monkeys, cricket, barn
owl, cats, bats and rats encode direction of arm movements
[11], direction of a wind stimulus [12], direction of a sound
stimulus [13], saccade direction [14], echo delay [15] and
position of the rat in its environment [16] respectively. The
tuning curve of a neuron is defined as its average firing rate
as a function of input stimulus intensity. Various neuronal
tuning curves have been identified, such as the cosine tuning
curve of motor cortical neurons [17], Gaussian tuning curves
of cortical V1 neurons, and sigmoidal tuning curve of stereo
V1 neurons. In a similar manner, we have encoded physical
quantities into population of neurons by their tuning curves
instead of individual spikes in the TAB framework. In our
system, inputs are voltage signals, which could be outputs

from an array of sensors representing physical quantities of
the world. The input stimulus is encoded via the tuning
curves of an ensemble of neurons, a phenomenon referred as
population encoding.

Neurons within the same cortical column have highly
heterogeneous responses to the same input stimulus. The
heterogeneity of neuronal responses has been thought to be
beneficial for sensory coding when stimuli are decoded from
the population response [18][19]. The shape of tuning curves
of individual neurons, and the heterogeneity of neuronal
responses affect the quality of population coding and the
accuracy of information processing in the cortex [20]. We
have adapted a similar concept of using heterogeneous
population of neurons in a TAB. The significance of
heterogeneity of tuning curves is presented in detail in
section VI.

As an ensemble of neurons encodes information,
decoding the full population response requires procedures for
combining the firing rates of many neurons into a population
ensemble estimate. One of the popular reconstruction
methods known as population vector method was developed
by Georgopoulos and collaborators, for coding of the
direction of arm movement in monkeys [11]. Abbott et al
have discussed various decoding methods, some of which are
complex methods based on statistical approaches and use
response probabilities, such as Maximum Likelihood
Estimation, Bayesian Estimation. Other methods use
response tuning curves, such as Least Square Estimation,
Projection Method, Vector Method, and Optimal Linear
Estimation [21]. In general, each neuron contributes a basis
function in this space of variables whenever it fires, and the
best estimate of the physical variables is computed from the
sum of these functions weighted by the spike rate occurring
in each neuron. In our TAB system, we have used a similar
approach to decode the stimulus, which is explained in
section V.

III. TAB FRAMEWORK
The TAB framework (Fig. 1) utilises the LSHDI (Linear

Solutions of Higher Dimensional Interlayers) principle
similar to neural population coding. One of the earliest work
in the neural network community, which is based on the
LSHDI principle was the Functional-link net computing
(FLNN) proposed by Pao et al in 1992 [22]. Similar work
was proposed by Schmidt et al in the same year, which
however did not attract much attention [23]. In 2006, Huang
et al proposed a similar concept as Extreme Learning
Machine (ELM) [24], which has attracted widespread
attention in the neural network community. The Neural
Engineering Framework (NEF) [25] is another example of a
network based on the LSHDI principle, which performs
spike-based computation and is quite popular in the
neuromorphic engineering community.

LSHDI networks are represented as having three layers
of neurons – input, hidden and output layers, in a feed-
forward structure [8]. These networks differ from similar
neural network architectures in several ways – (i) the hidden
layer is usually much larger than the input layer, (ii) the

Fig. 1. Architecture of the TAB framework. The input layer
neurons/nodes are connected to a larger number of non-linear
hidden layer neurons via random weights and controllable
offsets, O1 to OM. The connections from the hidden layer
neurons to the output neurons are linear, with trainable weights,
and the output neurons generate a linear sum of their inputs.

connections between the input layer and the hidden layer are
randomly generated, and (iii) the connections do not change
during the network training. As a result, the inputs are
randomly projected from their original input dimensionality
to a nonlinear hidden layer of neurons of a much higher
dimensionality. Input data points, which are not linearly
separable in their current space, allow a linear hyperplane in
the higher dimensional space that approximates a desired
function as a regression solution, or represents a
classification boundary for the input-output relationship. The
output layer neurons need therefore compute only a linearly
weighted sum of the hidden layer values in order to solve the
problem, hence the name Linear Solutions of Higher
Dimensional Interlayers (LSHDI) [8]. These linear weights
are determined analytically by calculating the product of the
pseudoinverse of the hidden layer activations with the
desired output values [26].

IV. BUILDING BLOCKS OF THE TAB IC
We have designed a test cell, comprising of a Hidden

Neuron block and an Output Weight block of the proposed
TAB architecture in 65nm technology. Additionally, the
TAB architecture allows us to design a major part of the
circuit with the lowest possible feature size in order to
maximise mismatch among the transistor parameters,
because device mismatch is inversely proportional to device
area. More importantly, we have added an extra controllable
offset (Fig. 1) for each hidden layer neuron to ensure that
each hidden neuron performs a different nonlinear operation
to the input. This systematic offset is fixed but different for

each neuron. Systematic offset may not be required if there is
sufficient random variation among transistors to produce a
distinct tuning curve for each neuron, but is a failsafe method
to spread the tuning curves of the neurons.

The first version of a TAB that we present here has a
simple configuration, with a single input voltage and a single
output current (single input-single output, SISO). In this
section, the VLSI implementation of the major building
blocks of the TAB, namely the Hidden Neuron and the
Output Weight are described.

A. Hidden Neuron
Neuroscientists have clearly demonstrated that individual

biological neurons respond selectively to various stimuli like
sound, motion, images and so on [27]. Each neuron has a
distinct tuning curve, which is found by presenting varied
input stimuli to the neuron and recording its firing rate. Each
neuron encodes the input stimuli according to its tuning
curve. Similarly, each artificial neuron on our chip encodes
input differently according to its distinct tuning curve.

In the TAB system described here, a simple neuronal
tuning curve is implemented using a differential pair, which
performs a hyperbolic tangent (tanh) nonlinear operation on
its input, similar to sigmoidal tuning curve of stereo V1
neurons in the cortex. The circuit is illustrated in Fig. 2A. M1
and M2 constitute the differential pair, and the sharing of
currents between M1 and M2 depends on their respective gate
voltage, Vin (input voltage) and Vref (constant reference
voltage). If all MOSFETs (‘metal–oxide–semiconductor
field-effect transistors’) are operating in weak-inversion and
at saturation, with the slope factor, n ranging from 1.1 to 1.5,
then currents in M1 and M2 transistors can be approximated
as:

I1 = Ib[exp(Vin/nUT)] / [exp(Vin/nUT) + exp(Vref/nUT)] (1)

I2 = Ib[exp(Vref/nUT)] / [exp(Vin/nUT) + exp(Vref/nUT)] (2)

With ideal transistors, the output currents, I1 and I2, are a
function of the input differential voltage between Vin (ramp
input) and Vref (constant input) and their difference is
identical to the mathematical tanh function. The current I1
saturates to the maximum bias current if Vin is higher than
Vref by more than 4 UT (100 mV), where UT is the thermal
voltage. In the TAB system, each neuron receives a
systematically different Vref, which results in a different
nonlinear curve for each neuron. The fact that the transistors
are not ideal, as assumed in (1) and (2) results in further
deviations from the tanh curve, as shown in Fig. 2B. Itanh is
copied from I1 using a current mirror that connects to the
Output Weight block. Vb is the voltage at the M3 transistor
that sets the bias current, typically in the range of a few
nanoamperes (nA).

Fig. 2B shows the tuning curves of a single hidden
neuron while varying Vref. In the actual TAB, each neuron
will have only one such tuning curve depending on its own

Fig. 3. Output Weight Block. A. Schematic of the Output
Weight block. Splitter circuit consisting of MR and the two M2R
transistors form the R2R network, which gets repeated 13 times in
the block. The octave splitter is terminated with a single MR
transistor. B. Measured current profile of the Output Weight block
as a function of the binary weights (13 bits) of the Hidden Neuron
block.

Fig. 2. Hidden Neuron Block. This block implements the tanh
nonlinear activation function for the TAB framework. A.
Schematic of the Hidden Neuron block. B. Measured tuning
curves of the hidden neuron as a function of Vin. Each curve
corresponds to different offset Vref .

Vref, and dependent on process variations such as offset
mismatch between the transistors in the differential pairs,
bias current mismatch due to variability in M3 and current
mirror mismatch. This illustrates the variation that can be
achieved at each hidden neuron by changes in Vref alone.

B. Output Weight
In the LSHDI framework, there exists a linear

relationship between the hidden layer and the output layer.
These layers are connected via the Output Weight block. In
our TAB SISO chip, the weight is controlled by a binary
number. Using simulations, we have found that 11-bits per
weight are sufficient for learning various functions. Using
more than 11-bits per weight does not improve learning
significantly. In the designed test cell, however, we have

used a 13-bit binary number for testing purposes. This binary
number controls output weights by controlling the amount of
current that flows from the hidden layer neurons to the
output layer neurons. We have implemented binary weighted
connections using a splitter circuit (Fig. 3A) [28].

Each current branch is controlled through a digital binary
switch. The input current, Itanh, which is the output of the
neuron block, is divided successively to form a
geometrically-spaced series of smaller currents. At each
branch, a fixed fraction of the current is split off, while the
remainder continues to later branches. The last stage is sized
to terminate the line as though it were infinitely long. The
current splitter principle accurately splits currents over 20
octaves, spanning from weak to strong inversion of
transistors, dependent only on the effective device geometry.
MR and the two M2R transistors form an R2R network, and
the octave splitter is terminated with a single MR transistor.
The splitter has N stages; the current at the kth stage is
(Itanh/2k). The final current is the same as the penultimate
current. The transistor sizes of MR and M2R are equal. The
reference voltage for the p-FET gates in the splitter is the
master bias voltage Vgbias [28]. The lower half of the R2R

block has two transistor switches that act as a binary synapse
for every branch, and route the branch current to either useful
current, Igood, or to current that goes to ground, Idump. Igood is
mirrored to generate presynaptic current Iout for the output
layer neuron. Fig. 3B shows the measured output current of
the Output Weight block with respect to various binary
weights.

V. OFFLINE LEARNING OF THE TAB IC
Learning in the TAB framework is achieved by

computing output weights to train the system for desired
regression/classification tasks. Briefly, the LSHDI
framework determines the output weights (between the large
hidden layer and linear output neurons) analytically by
calculating the product of the pseudoinverse of the hidden
layer activations with the target outputs [29].

A novel algorithm used for offline learning on the TAB
IC is discussed here. Let us consider a three-layer feed-
forward TAB network with L number of hidden neurons.
Let G(.,.,.) be a real-valued function so that G(wi

(1), bi
(1), oi

(1),
x) is the output of the ith hidden neuron, corresponding to the
input vector x ϵ ℝm and the random input weight vector wi

(1)
= (wi1

(1),… wim
(1)), where wis

(1) is the weight of the
connection between the ith hidden neuron and sth neuron of
the input layer. Random bias vector bi

(1) ϵ ℝ and the random
input weight vector wi

(1) both arise due to random mismatch
of the transistors. Systematic offset oi

(1) ϵ ℝ is added to
make sure each neuron exhibits distinct tuning curve, which
is an essential requirement for learning in LSHDI
framework, discussed in detail in section VI. The output
function f(.) is given by:

f(x) = Ʃ
L

i=1
 wi

(2) G(wi
(1), bi

(1), oi
(1), x) (3)

where, wi
(2) = (w1i

(2),… wki
(2)) ϵ ℝk is the weight vector

where wji
(2) ϵ ℝ is the weight connecting the ith hidden

neuron with the jth neuron of the output layer. Here, G(.,.,.)
takes the following form:

G(wi, bi, x) = g(wi
(1).x + bi

(1) + oi
(1)) (4)

where, g: ℝ ℝ is the activation function.

Suppose, for a training data set {(xn, yn)}n=1,2..C , xn =
(xn1,…, xnm) ϵ ℝm denotes the input vector, yn = (yn1,…, ynk) ϵ
ℝk is its corresponding output vector, and C is the total
number of input data patterns. Let the values of the input
weight vectors, wi

(1) ϵ ℝm, the bias, bi
(1) ϵ ℝ, be randomly

assigned and oi
(1) ϵ ℝ, be assigned systematically. Then, the

standard TAB framework with L number of hidden neurons
approximates the input samples with zero error if and only if
there exists wi

(2) ϵ ℝk such that:

yn = Ʃ
L

i=1
wi

(2) G(wi
(1), bi

(1), oi
(1), xn) where, n = 1,2,..C (5)

The above set of equations can be rewritten in the
following matrix form as:

HW(2) = Y (6)

where,

𝐻𝑀𝚡𝐿 =

⎩
⎪
⎨

⎪
⎧𝐺�𝑤1

(1), 𝑏1, 𝑜1, 𝑥1�… …𝐺�𝑤𝐿
(1), 𝑏𝐿 , 𝑜𝐿 , 𝑥1�

: ∶
: ∶
: ∶

𝐺�𝑤1
(1), 𝑏1, 𝑜1, 𝑥𝐶�… …𝐺�𝑤𝐿

(1), 𝑏𝐿 , 𝑜𝐿 , 𝑥𝐶�⎭
⎪
⎬

⎪
⎫

(7)

𝑊(2)
LxK=

⎩
⎪
⎨

⎪
⎧ w1

(2)

 :
 :
 :

wL
(2) ⎭

⎪
⎬

⎪
⎫

, 𝑌𝐶𝚡𝐾 =

⎩
⎪
⎨

⎪
⎧

𝑦1
 ∶

∶
∶
𝑦𝐶 ⎭

⎪
⎬

⎪
⎫

 (8)

Here, the ith column of H will be the output of the ith
hidden neuron for all the input training data samples (x1,…,
xm). Further, the matrix H need not be a square matrix.
Under the assumption that the activation function g(.) is
infinitely differentiable, it has been shown that for fixed
input weight vectors, wi

(1), and biases, bi
(1), oi

(1), the least
squares solution W(2) for the matrix (6) is:

W(2) = H+Y (9)

where, H+ is the Moore-Penrose generalised
pseudoinverse of the matrix H.

The output weight calculation can be summarised as
follows:

Input: Training set{(xn, yn)}n=1,2..C , xn ϵ ℝm and yn ϵ ℝk, L
is the number of hidden neurons, and the activation function
is g(.)

1. For i = 1,2,…L, randomly assign the input weight
vector wi

(1) ϵ ℝm, random bias bi
(1) ϵ ℝ and systematic

offset oi
(1) ϵ ℝ.

2. Determine the matrix H defined by the (7).
3. Calculate H+.
4. Calculate the output weights matrix as W(2) = H+Y,

where Y is given by (8).

Output: Network with the determined output weight
vectors wi

(2) ϵ ℝk for the randomly chosen weight vectors
wi

(1) ϵ ℝm, bias bi
(1) ϵ ℝ and systematic offset oi

(1) ϵ ℝ for i =
1,2,…L will compute the estimated output value ŷ for any
input test sample x ϵ ℝm using the following formula:

ŷ = Ʃ
L

i=1
 wi

(2) g(wi
(1).x + bi

(1) + oi
(1)) (10)

VI. IMPORTANCE OF HETEROGENEITY OF TUNING
CURVES

It has been demonstrated that in a neurobiological
system, individual neurons exhibit highly heterogeneous
responses when presented with the same stimuli. This
heterogeneity has been shown to improve the information
encoded in the neuronal population activity by decreasing
the neuronal correlations. Diversity of orientation tuning
curve profiles of individual neurons proves beneficial for

Fig. 4. Learning curves for the regression functions – A. sin, B.
cube, C. sinc. The red curve represents the target function, and
the blue curve represents learnt function.

sensory coding when stimulus orientation is decoded from
the population response [18]. Similarly, we show that the
tuning curves of neurons in our TAB framework should be
heterogeneous so as to have the highest information
encoding capacity.

Let us revisit equation (6) and find W(2) analytically:

Y = HW(2)

HTY = HTHW(2)

(HTH)-1HTY= W(2)

Then estimated output,

Ŷ = HW(2) = H((HTH)-1HTY)

The error of the system, which is the difference between
estimated Ŷ and actual Y, is given as:

 E = (Y-Ŷ)

E = (Y-H(HTH)-1HTY)

E = Y(I-H(HTH)-1HT)

where, I is the identity matrix. For E=0,

I = H(HT H)-1HT (11)

If matrix H is a full column rank matrix, or
equivalently, columns of the matrix H are linearly
independent, then,

I = HH+ (12)

where, H is the measured matrix containing the hidden
neuron output across the range of input values and H+= (HT
H)-1HT is the pseudoinverse of a matrix [30]. Equation (11)
implies that any input vector xi is perfectly encoded when the
ith row of the RHS matrix is equal to the ith row of the
identity matrix I. Thus, the encoding capacity of the network
is proportional to the number of rows that are equal between
the matrices on both sides of equation (11). Mathematically,
the more the number of tunning curves of the hidden neurons
are independent, the higher is the encoding capacity of the
TAB system. Tuning curves of individual neurons are
independent in a heterogeneous neuron population, which
thus increases the encoding of information [18],[31]. This is
a very important observation, and is essential for optimal
learning in an LSHDI network. In the next section, we
discuss how we can maximise the encoding capacity of the
TAB.

Role of systematic offset: When a population of biological
neurons is presented an input stimulus, the neuronal
responses vary widely owing to variations in neuronal
response properties, such as mean firing rate, receptive field
location, and stimulus selectivity. Such heterogeneity of
responses results in faithful encoding of information
covering the whole range of input stimuli. We have tried to
create a heterogeneous population of neurons in our TAB
system by exploiting randomness (fixed-pattern transistor
mismatch) and variability arising due to the fabrication
process. An element of risk and uncertainty is present here,
as one cannot be certain there would be sufficient mismatch

in a particular technology until after manufacturing. For
example, older technologies with large feature sizes
generally have a low degree of mismatch, which would limit
the learning capability of a TAB. This risk is attenuated by
introducing a fixed and distinct systematic offset (Fig. 1) for
each hidden layer neuron of the TAB. The systematic offset
ensures that all tuning curves are distinct and independent,
thus improving the encoding capacity of the system. We
have found in simulations that if the neuronal tuning curves
are too similar, the system requires an extremely large
number of hidden neurons to learn even simple functions.

VII. LEARNING RESULTS

In this section, we describe the learning capability of the
TAB system in software using the measured results of the

building blocks. We have used the hidden neuron’s tuning
curves with respect to different Vref voltages (34 in total). The
TAB architecture was trained to implement various functions
such as sin (Fig. 4A), cube (Fig. 4B), and sinc (Fig. 4C). The
learning capability of an LSHDI network depends on the
number of hidden layer neurons [8]. As evident from Fig. 4,
34 neurons are sufficient to learn simple functions such as
sin and cube, but for complex function like sinc (Fig. 4C), a
higher number of neurons is needed for more accurate
performance. We have calculated the output weights
externally using offline learning method as discussed in
section V. The results suggest that the system can be
successfully trained to perform the various regression tasks.

VIII. CONCLUSIONS

In this paper, we have described a novel framework that
exploits device mismatch in circuits and performs reliable
computation. We have presented measurement results of the
building blocks of the TAB IC implementation. Additionally,
we have shown the potential learning capability of the TAB
system.

In IC technology, random device mismatch is a major
problem which always leads to a suboptimal design. It may
be minimised to some extent in higher process technology
(>100nm) with large device area and good design effort,
which however increases production costs significantly.
Other research groups have also suggested using random
device mismatch in their architecture [32], [33]. However,
there are major differences in their architecture compared to
ours. Basu et al [32] have shown a spiking neuron-based
framework which converts analogue input into spikes and
translates them into spike rate using counter for each neuron
and the rest of the computation is performed in digital
controller. Kudithipudi et al [33] have developed a
memristor-based network in software simulations, which
has many practical issues to be considered in chip
implementation.

The amount of random mismatch depends on process
technology – it is low for a process technology with a large
feature size, and vice versa. It also varies from chip to chip.
Both [32] and [33] have used software simulations explicitly
generates the desired distribution of randomness (variance)
which then leads to distinct tuning curves for the entire
input range. In their system, the input layer weights of the
LSHDI network only rely on this random mismatch
obtained from fabrication, which may not be sufficient to
generate diverse neuronal tuning curves. In our
implementation we avoid this issue by providing an
alternative to obtain the systematic offset generated through
the resistive polyline, which generates a different Vref
voltage for each neuron to ensure that each neuron has a
different tuning curve.

An LSHDI network has a large number of hidden
neurons. Both previous designs have represented the input
variable as a current. Kudithipudi et al group have used a
resistor before the differential amplifier to convert the total
input current to a voltage. They require resistors in the range

of few mega-ohms to operate their system in the sub-
threshold region. In the sub-threshold region, the differential
amplifier will get saturated as the differential voltage goes
above 4UT (~100mV). Since an LSHDI network requires a
large number of hidden neurons, using many resistors in the
design will increase the chip area unrealistically. Also,
current would increase as a multiple of the number of inputs
and may affect the chip adversely. The above system also
uses memristors. This might be a good alternative, but
memristors are still in the research phase, and may cause
problems in physical realisation [34].

Here, we have presented measurement results of a test
cell in a TAB framework. We have shown the learning
capability of the TAB system for various regression tasks.
Future work will aim to test the learning capability of a
complete TAB chip and will include quantification of the
random variations across the hidden neurons. The TAB
system is designed using neuromorphic principles based on
stochastic computation, which has the advantages of low
power consumption, adaptability to local change and the
ability to learn. This system may help overcome limitations
of analogue IC design at low process nodes and will drive
the integration process with digital blocks in the same
circuit and process node. This may find applications in
analogue/digital converters (ADCs) and digital-to-analogue
converters (DACs) for submicron mixed signal chips such
as those used in mobile processor chips and data acquisition
chips. We know that TABs require a large number of hidden
layer nodes and connections to and from these nodes;
however, unlike custom analogue design, minimum sized
transistors can be used and no specialised layout techniques
will be required. Furthermore, as the TAB framework
desires large random mismatch among devices and as
mismatch is inversely proportional to device area, it could
lead to significant reductions in chip area and manufacturing
costs.

REFERENCES
[1] G. E. Moore, “Cramming More Components Onto Integrated

Circuits,” Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.
[2] A. Papanikolaou, M. Miranda, H. Wang, F. Catthoor, M.

Satyakiran, P. Marchal, B. Kaczer, C. Bruynseraede, and Z.
Tokei, “Reliability issues in deep deep sub-micron technologies:
time-dependent variability and its impact on embedded system
design,” in 2006 IFIP International Conference on Very Large
Scale Integration, 2006, vol. 249, pp. 342–347.

[3] P. Kinget, “Device mismatch and tradeoffs in the design of
analog circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp.
1212–1224, Jun. 2005.

[4] A. Marshall, “Mismatch and Noise in Modern IC Processes,”
Synth. Lect. Digit. Circuits Syst., vol. 4, no. 1, pp. 1–140, Jan.
2009.

[5] A. Pouget, P. Dayan, and R. S. Zemel, “Inference and
computation with population codes.,” Annu. Rev. Neurosci., vol.
26, pp. 381–410, 2003.

[6] S. C. Liu and T. Delbruck, “Neuromorphic sensory systems,”
Curr. Opin. Neurobiol., vol. 20, pp. 288–295, 2010.

[7] S. DRAGHICI, “NEURAL NETWORKS IN ANALOG
HARDWARE — DESIGN AND IMPLEMENTATION
ISSUES,” International Journal of Neural Systems, vol. 10. pp.
19–42, 2000.

[8] J. C. Tapson, G. K. Cohen, S. Afshar, K. M. Stiefel, Y. Buskila,
R. M. Wang, T. J. Hamilton, and A. van Schaik, “Synthesis of
neural networks for spatio-temporal spike pattern recognition and
processing,” Front. Neurosci., vol. 7, p. 153, Jan. 2013.

[9] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson,
“Stochastic Electronics: A Neuro-Inspired Design Paradigm for
Integrated Circuits,” Proc. IEEE, vol. 102, no. 5, pp. 843–859,
May 2014.

[10] A. Pouget, P. Dayan, and R. Zemel, “Information processing with
population codes.,” Nat. Rev. Neurosci., vol. 1, no. November,
pp. 125–132, 2000.

[11] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner,
“Neuronal population coding of movement direction.,” Science,
vol. 233, pp. 1416–1419, 1986.

[12] J. P. Bacon and R. K. Murphey, “Receptive fields of cricket giant
interneurones are related to their dendritic structure.,” J. Physiol.,
vol. 352, pp. 601–623, 1984.

[13] E. I. Knudsen and M. Konishi, “A neural map of auditory space
in the owl.,” Science, vol. 200, pp. 795–797, 1978.

[14] J. A. Van Gisbergen, A. J. Van Opstal, and A. A. Tax,
“Collicular ensemble coding of saccades based on vector
summation.,” Neuroscience, vol. 21, pp. 541–555, 1987.

[15] W. E. O’Neill and N. Suga, “Target range-sensitive neurons in
the auditory cortex of the moustache bat.,” Science (80-.)., vol.
203, pp. 69–72, 1979.

[16] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial
map. Preliminary evidence from unit activity in the freely-
moving rat.,” Brain Res., vol. 34, pp. 171–175, 1971.

[17] B. Amirikian and A. P. Georgopulos, “Directional tuning profiles
of motor cortical cells,” Neurosci. Res., vol. 36, pp. 73–79, 2000.

[18] M. I. Chelaru and V. Dragoi, “Efficient coding in heterogeneous
neuronal populations.,” Proc. Natl. Acad. Sci. U. S. A., vol. 105,
no. 42, pp. 16344–9, Oct. 2008.

[19] M. Rigotti, O. Barak, M. R. Warden, X.-J. Wang, N. D. Daw, E.
K. Miller, and S. Fusi, “The importance of mixed selectivity in
complex cognitive tasks.,” Nature, vol. 497, no. 7451, pp. 585–
90, May 2013.

[20] A. S. Ecker, P. Berens, A. S. Tolias, and M. Bethge, “The Effect
of Noise Correlations in Populations of Diversely Tuned
Neurons,” Journal of Neuroscience, vol. 31, no. 40. pp. 14272–
14283, 2011.

[21] E. Salinas and L. F. Abbott, “Vector reconstruction from firing
rates,” J. Comput. Neurosci., vol. 1, no. 1–2, pp. 89–107, Jun.
1994.

[22] Y.-H. Pao and Y. Takefuji, “Functional-link net computing:
theory, system architecture, and functionalities,” Computer
(Long. Beach. Calif)., vol. 25, no. 5, pp. 76–79, May 1992.

[23] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin,
“Feedforward neural networks with random weights,” in
Proceedings., 11th IAPR International Conference on Pattern
Recognition. Vol.II. Conference B: Pattern Recognition
Methodology and Systems, pp. 1–4.

[24] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, no.
1–3, pp. 489–501, Dec. 2006.

[25] T. C. Stewart and C. Eliasmith, “Large-Scale Synthesis of
Functional Spiking Neural Circuits,” Proc. IEEE, vol. 102, no. 5,
pp. 881–898, May 2014.

[26] J. Tapson and A. van Schaik, “Learning the pseudoinverse
solution to network weights,” Neural Netw., vol. 45, pp. 94–100,
Sep. 2013.

[27] L. F. Abbott, “Theoretical neuroscience rising,” Neuron, vol. 60,
no. 3, pp. 489–95, Nov. 2008.

[28] T. Delbrück and A. Van Schaik, “Bias Current Generators with
Wide Dynamic Range,” Analog Integr. Circuits Signal Process.,
vol. 43, no. 3, pp. 247–268, Jun. 2005.

[29] J. Tapson and A. van Schaik, “Learning the pseudoinverse
solution to network weights,” Neural Networks, vol. 5, 2013.

[30] R. Penrose and J. a. Todd, “A generalized inverse for matrices,”
Math. Proc. Cambridge Philos. Soc., vol. 51, no. July, p. 406,
1955.

[31] C. Eliasmith and C. H. Anderson, Neural Engineering
(Computational Neuroscience Series): Computational,
Representation, and Dynamics in Neurobiological Systems. MIT
Press Cambridge, MA, USA, 2002, p. 256.

[32] E. Yao, S. Hussain, A. Basu, and G.-B. Huang, “Computation
using mismatch: Neuromorphic extreme learning machines,”
2013 IEEE Biomed. Circuits Syst. Conf., no. 1, pp. 294–297, Oct.
2013.

[33] C. Merkel and D. Kudithipudi, “A current-mode
CMOS/memristor hybrid implementation of an extreme learning
machine,” Proc. 24th Ed. Gt. lakes Symp. VLSI - GLSVLSI ’14,
no. 3, pp. 241–242, 2014.

[34] P. Meuffels and R. Soni, “Fundamental issues and problems in
the realization of memristors,” arXiv Prepr. arXiv1207.7319, vol.
2012, pp. 1–14, 2012.

	I. Introduction
	II. Neural Population Coding
	III. TAB Framework
	IV. Building Blocks of the TAB IC
	A. Hidden Neuron
	Output Weight

	V. Offline Learning of the TAB IC
	VI. Importance of Heterogeneity of Tuning Curves
	VII. Learning Results
	VIII. Conclusions
	References

