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Abstract— We propose an unsupervised compressed
sensing (CS)-based framework to compress, recover, and
cluster neural action potentials. This framework can be
easily integrated into high-density multi-electrode neural
recording VLSI systems. Embedding spectral clustering
and group structures in dictionary learning, we extend the
proposed framework to unsupervised spike sorting with-
out prior label information. Additionally, we incorporate
group sparsity concepts in the dictionary learning to enable
the framework for multi-channel neural recordings, as in
tetrodes. To further improve spike sorting success rates in
the CS framework, we embed template matching in sparse
coding to jointly predict clusters of spikes. Our experimental
results demonstrate that the proposed CS-based framework
can achieve a high compression ratio (8:1 to 20:1), with a
high quality reconstruction performance (>8 dB) and a high
spike sorting accuracy (>90%).

Index Terms— Compressed sensing, unsupervised,
dictionary learning, neural recording, spike sorting,
multi-channel.

I. INTRODUCTION

H IGH-DENSITY multi-electrode neural recording
microsystems have evolved over the years to

become essential tools in neural electrophysiology experi-
ments [1]–[9]. These microsystems monitor brain activity by

Manuscript received August 9, 2017; revised February 14, 2018;
accepted April 10, 2018. Date of publication April 26, 2018; date of current
version June 6, 2018. This work was supported in part by NSF under
Grant DMS-1222567 and in part by AFOSR under Grant FA9550-12-1-
0136. (Corresponding author: Tao Xiong.)

T. Xiong, R. Etienne-Cummings, and T. D. Tran are with the Department
of Electrical and Computer Engineering, Johns Hopkins University,
Baltimore, MD 21218 USA (e-mail: tao.xiong@jhu.edu).

J. Zhang is with the Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

C. Martinez-Rubio is with National Parkinson Foundation, Miami, FL
33131 USA.

C. S. Thakur is with the Department of Electronic Systems Engineering,
Indian Institute of Science, Bengaluru 560012, India.

E. N. Eskandar is with the Harvard Medical School, Boston, MA
02115 USA, and also with the Department of Neurosurgery, Massa-
chusetts General Hospital, Boston, MA 02114 USA.

S. P. Chin is with the Department of Electrical and Computer Engineer-
ing, Johns Hopkins University, Baltimore, MD 21218 USA, also with the
Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA, and also with the Department
of Computer Science, Boston University, Boston, MA 02215 USA.

Digital Object Identifier 10.1109/TNSRE.2018.2830354

collecting extracellular neural action potentials (or spikes)
from different areas of the brain. Using high-density multi-
electrodes array (MEA) or tetrode drives, the action potential
of each neuron can be recorded by multiple electrodes in its
proximity. This redundancy of features can greatly improve
the spike clustering accuracy. However, the drawback is
that the large number of electrodes generate large amount
of data. This presents itself as a challenge for the design
of the implantable system in terms of chip size and power
consumption. Typically, spikes are sampled at around 30 kHz
at a resolution of more than 10 bits. A multi-channel neural
recording system containing up to thousands of channels
generates data at the rate of 300 Mbps [10]. This would cost
around 50 mW to transmit wirelessly [10], which results in
significant heat dissipation and impedes large-scale integration
as the electronics are very close to the side of recording.

Compressed sensing (CS) [11], [12] techniques have been
proposed to address the challenge of dealing with large
amount of data. For example, Mamaghanian et al. [13] incor-
porated CS in a real-time energy efficient framework for
electrocardiogram (ECG) compression. This CS-based ECG
compression outperformed the conventional digital wavelet
transform (DWT)-based approach and was able to improve
power efficiency. Another CS-based ECG compression sys-
tem demonstrated that the signal could be compressed and
reconstructed at a compression ratio of 4:1 to 16:1 with
dynamic thresholding [14]. Chen et al. [15] also proposed
a hardware-efficient CS architecture for data compression in
wireless sensors, which had a power consumption of only
1.9 μW, thus significantly improving the power efficiency
of such systems. Another CS-based system that exploits the
‘rakeness’ approach to maximize the amount of information
contained in the measurements demonstrated a superior per-
formance with a compression ratio of 8:1 and 10:1 [16], [17].
Furthermore, the CS-based system has now been extended to
multi-channel systems. Gangopadhyay et al. [18] designed a
64-channel CS analog front-end for biosensor applications,
which could recover and preserve most of features in the signal
at a compression ratio of 2:1 to 6:1. Zhang et al. [19] also
proposed a 4-channel closed-loop CS neural recording system,
which was able to achieve >10 times the compression ratio
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Fig. 1. Basic block diagram of the proposed CS neural recording system.
In the CS approach, multi-channel signals are randomly sampled by an
on-chip sensing matrix S and then wirelessly transmitted to an off-chip
terminal for reconstruction and sorting. The design of the multi-modal
dictionary learning D for sparsifying signals is the major contribution of
our proposed CS approach.

while consuming only 0.83 μW per channel. Li et al. [20]
presented a 256-channel digital signal processing system using
the CS technique, which has achieved a power consumption
of 12.5 μW per channel at a data reduction of around 90%.
Liu et al. [21] designed a highly configurable 16-channel CS
module for chronic recording and brain machine interface,
featuring a compression ratio of 8:1.

Despite their advantages, the CS-based systems developed
previously for signal compression suffer from several limita-
tions. Most of the CS-based systems are non-adaptive, and use
a signal-agnostic dictionary such as the identity matrix or the
wavelet matrix to sparsify the signal. It has been shown that
the use of a signal-dependent dictionary improves the recon-
struction quality and compression ratio (>10:1) compared
to the signal-agnostic dictionary [19], [22]–[24]. The signal-
dependent dictionary helps increase the sparsity of the signal
significantly in the signal-oriented basis. From the perspective
of multi-channel neural recordings, the previous CS-based
systems compress the time varying neural signal on single
electrode. They do not consider the signal characteristics and
correlation at adjacent recording electrodes in the system
design. As a result, the model does not take these useful
spatial information into account for signal compression and
reconstruction. Additionally, the previous CS-based systems
do not incorporate the feature of online analysis, such as spike
sorting, in real-time experiments. In order to overcome these
limitations in CS-based multi-channel neural recordings and to
enable online analysis, we propose a CS-based approach that
is more suitable for multi-channel recordings, and combine
the post-processing such as spike sorting during the recon-
struction process. As shown in Figure 1, the off-chip design
of the multi-channel dictionary learning serves as the most
important component of our CS framework with the following
contributions:

A. Multi-Channel Dictionary Learning Using
Joint-Group Sparsity

In multi-channel neural recording systems, such as the
tetrodes [2], several close-by electrodes around neurons collect
spikes simultaneously. Spikes recorded by these electrodes

Fig. 2. An illustration of the different clusters (color-coded spikes) of
neural signals from the Leicester [27] and MGH databases [26]. In spike
sorting, spikes are grouped into different clusters based on their distinct
shapes. Normally, one cluster corresponds to a single neuron.

share similar patterns and features. To take advantage of the
correlation among these electrodes in sensing and recovering,
we introduce a joint-group sparsity constraint in dictionary
learning to enforce spikes recorded at electrodes in close prox-
imity to be recovered using similar items from the dictionary.
Compared to the conventional group sparsity in [25], the pro-
posed work is focused on marrying the joint-group sparsity to
the dictionary learning in both coding and update stages. This
dynamic combination greatly improves the compression ratio
and reconstruction performance.

B. Online Spike Sorting Using Spectral Clustering
and Group Sparsity

An electrode can detect spikes from a group of neurons in its
proximity. As shown in Figure 2, these spikes have particular
shapes and can be clustered, corresponding to different neu-
rons. Conventional spike sorting, which was supervised and
for offline post-processing, used prior information to train a
classifier. However, the large amounts of spikes generated are
not labeled in real-time experiments. Neuroscientists have to
manually sort and cluster these spikes using offline sorting
software (e.g., Plexon) [26]. This process is neither time-
efficient, nor integrated with the neural recording systems to
realize online spike sorting. In our work, we incorporate spec-
tral clustering to initialize the group structure of the dictionary
and enable unsupervised spike sorting. Therefore, spikes can
be represented and sorted based on the group sparsity in an
unsupervised manner. Furthermore, the spectral clustering also
helps the convergence of the dictionary learning.

The rest of the paper is organized as follows: In section II,
the CS theory and background are recalled. In section III,
we introduce our signal model, dictionary-learning algorithm,
recovery and spike sorting approach. In section IV, we com-
pare the proposed approach with other CS-based approaches
using several neural databases, including the synthetic data-
base, and real spikes recorded from animals. In section V,
we present the conclusion and discussion.

II. BACKGROUND

A. Compressed Sensing and Sparse Representation
The CS theory [11], [12] demonstrates that an S-sparse

signal x of length N is able to be compressed into a mea-
surement vector y of length M by a matrix S of dimension
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M by N satisfying the Restricted Isometry Property and
M ∼ S log( N

S ), where normally S � M < N . Specifically,
the S-sparse signal is defined as a signal of which only
S coefficients are non-zero elements in the entire length
of N or can be approximately represented by its largest S
coefficients.

By solving the �1 norm optimization problem below,
the sparse signal x can be recovered with high probability.

min
x

||x||1 s.t . y = Sx.

Normally, biomedical signals such as action potentials and
electroencephalogram signals are not sparse in time or fre-
quency domains. Each neuron generates spikes with a char-
acteristic shape and amplitude based on its morphology and
proximity to electrodes. Spikes collected during neural record-
ings are generally stable over time. As a result, it is possible to
construct a signal-dependent dictionary matrix D of dimension
N by L to represent spikes sparsely, which transforms the
non-sparse signal x of length N into a S-sparse vector a of
length L and normally N � L. Therefore, the non-sparse
signal x can be represented as x = Da, which is defined as
the linear combination of a few atoms from the dictionary.
Now the original �1 optimization problem becomes:

min
a

||a||1 s.t . y = SDa.

By solving the above optimization problem, we have the
sparse vector a and the recovered non-sparse signal x̂ = Da.
Intuitively, the CS approach reconstructs the original spike x
of length N from the measurement y of length M , achieving
a compression ratio of N

M , which provides a promising way to
compress the neural signal during data transmission.

B. Dictionary Learning

In order to further reduce the length M of the measurement
y, a dictionary D should be designed to sparsely represent the
signal x as much as possible, according to the CS theory.
For neural recordings, there are two approaches of choos-
ing a sparsifying dictionary in the CS framework. The first
approach incorporates signal-agnostic dictionaries such as the
identity or the wavelet dictionary, which can represent spikes
in the time-frequency domain. The second approach trains a
signal-dependent dictionary using prior information of spikes,
since neural recording electrodes collect unique and repetitive
spikes from neurons. Our previous works [22], [28] have
demonstrated that the signal-dependent dictionary is superior
to the signal-agnostic dictionary in terms of compression ratio,
reconstruction quality, and spike sorting accuracy. Therefore,
the ability to design a robust dictionary is key in determining
the efficiency of a CS neural recording system.

The task of “dictionary learning” involves training a dic-
tionary D representing the training data samples X as sparse
compositions by optimizing the problem:

min
D,A

||X − DA||22 s.t . ∀i, ||ai ||0 ≤ S.

ai , which is a column item of A, indicates the S-sparse
vector for i -th sample of training database and A indicates the
sparse coefficients matrix.

Fig. 3. Intuitive illustration of the proposed signal model in tetrode setup
with discriminative group structures (color-coded blocks) and joint-group
sparsity (red filled) for multi-mode structured dictionary learning.

C. Compressed Sensing Neural Recording Systems

Many compression systems have incorporated the CS
technique for processing biosignals [13]–[15], [17]–[19],
[24], [29]. These CS-based neural recording systems are
able to achieve a high power efficiency as well as a high
density integration owing to the implementation of a simple
circuit. The sensing matrix S can be implemented on chip
to compress the signal in the front-end [14], [18], [19].
Furthermore, the CS-based systems provide the flexibility
of choosing a suitable dictionary D as the on-chip random
sensing mechanism independent from the sparse representation
basis. Currently, there are two different methods in the design
of the sparse representation basis. One method is to use a
signal-agnostic dictionary, such as the identity and wavelet
basis [13]–[15], [18], which is independent from the signal
itself. Another approach is to use a signal-dependent dictionary
as the representation basis, which is adaptive and learns from
the training samples. Previous works [19], [22], [25], [28] have
demonstrated that the signal-dependent CS dictionaries have
superior performance over other compression neural recording
methods including spike detection, wavelet and other CS-based
approaches in terms of compression ratio, reconstruction qual-
ity, spike sorting success rate, and chip power consumption.

III. METHOD

A. Joint-Group Sparsity

We assume neural spikes X ∈ R
C×T , recorded from C chan-

nels, belongs to G clusters or groups. T is the discrete length
of the waveforms. Now, our goal is to use an unsupervised
method to train a dictionary D to sparsely represent signal x
(a column of X). We also desire that the dictionary, D, to have
discriminative properties. As shown in Figure 3, D can be seen
as a concatenation of sub-dictionaries Dc,g . This organized
construction would allow spikes from channel c belonging to
group g to only have only non-zero sparse coefficients ac,g

in sub-dictionary Dc,g , while having zero coefficients ac,g′ in
other sub-dictionaries Dc,g′ where g′ �= g.

Furthermore, multi-electrode recording techniques ofter rely
on signal correlation between different adjacent electrodes to
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perform spike clustering and sorting. Similarly, we can also
take this property into sparse dictionary learning. For example,
in the case of tetrodes, four closely bundled electrodes capture
the neural activities of the surrounding cells. Due to the close
proximity of the electrodes, the spike waveforms xc=1, xc=2,
xc=3 and xc=4 recorded on them at time stamp t are highly
correlated. Therefore, each sparse coefficient ac has the similar
non-zero support in the sub-coefficient ac,g with the same
group g. Given these definitions, the joint-group sparsity is
defined as:

||A||group,0 =
G∑

l=1

I (||Ag ||F > 0) = 1,

A = [a1, a2 . . . aC], Ag = [a1,g, a2,g . . . aC,g]
ac = [ac,1, ac,2 . . . ac,G ], ||ac||0 ≤ S, ∀c.

In our formulation, I is the indicator function and S denotes
the sparsity. ||Ag||F denotes the Frobenius norm. ||A||group,0
is constrained to one to enforce that only one Ag contains non-
zero coefficients while other Ag′ contains zero coefficients..
Therefore, the mathematical definition of the proposed signal
model is:

xc = [Dc,1Dc,2 . . . Dc,G ][a	
c,1 a	

c,2 . . . a	
c,G]	,

||A||group,0 = 1, ||ac||0 ≤ S, ∀c.

Intuitively, a spike should be represented by atoms from
the corresponding group, and also be constrained by the infor-
mation given by neighboring electrodes. Taking neighboring
spikes into account, the compression ratio can be further
improved, which also promotes the performance of the neural
recording systems in terms of power efficiency.

In the following sections, we outline the details of dictionary
learning using joint-group sparsity.

B. Dictionary Initialization

To begin learning the dictionary, we must first initialize the
dictionary to enable fast convergence to an optimal solution.
Previously, we have used the k-means to initialize the dictio-
nary and successfully improve the spike sorting accuracy in
unsupervised CS-based neural recording systems [28]. A non-
random dictionary with initialized group structures would
help speed up the dictionary learning. Given the preliminary
group structure in the dictionary, the learning algorithm could
converge to the optimal solution faster compared to the random
initialization. To initialized the dictionary, we used the spectral
clustering [30] method. The motivation of spectral clustering
is to find a satisfactory clustering representation among the
spikes and enable the initialization of group structures in the
dictionary.

The initialization is divided into two stages: (i) similarity
matrix initilization, and (ii) spectral clustering. As shown in
Algorithm 1, the similarity matrix E represents the assess-
ment of similarity (Euclidean distance) between spikes. E is
generated based on the nearest-neighbour method and then the

similarity of two spikes in the multi-channel is defined as:

e(t, t ′) =
C∑

c=1

||xc,t − xc,t ′ ||2,

t, t ′ ∈ {1, 2, . . . , T }, t �= t ′.

Intuitively, we build the similarity matrix E like a graph,
where the spikes are vertexes. The smaller Euclidean distance
e(t, t ′) indicates the high correlation between two spikes. If the
Euclidean distance is smaller than a pre-defined error , then
we build the edge between the two spikes in E. The details
are shown in Algorithm 1.

Algorithm 1 Similarity Matrix Initialization
Require: Training data Xc = [xc,1 xc,2 . . . xc,T ], where c =

1, 2, . . . , C (C = 1 indicates the single channel). K = 10
is defined for k nearest neighbour (k-NN) classification.
Pre-defined error .

1: Determine the set Vt for t-th spike xc,t using k-NN and
threshold error . Among the most K similar spikes,
we add the index t ′ into the set Vt if e(t, t ′) ≤ error .

2: Initialize similarity matrix E ∈ R
T ×T , where E(t, t ′) = 0,

∀t, t ′.
3: Set E(t, v) = 1,∀t, v ∈ Vt .
4: Symmetrize the similarity matrix E = E + E	.
5: Set E(t, t) = 1, ∀t .
6: Return similarity matrix E.

Given E from Algorithm 1, we pre-define the group number
G and then adopt spectral clustering to group neural signals
into G different clusters. Generally, as shown in Algorithm 2
the spectral clustering transforms the original clustering to
another domain that forms tight clusters. From the graph cut
point of view, the intuition is to find a partition of the graph
such that the number of edges between clusters is minimal.
The details of spectral clustering can be found in [30].

Given the clustering information g from Algorithm 2,
the dictionary Dc of c-th channel is built as:

Dc = [Dc,1Dc,2 . . . Dc,G ].
Dc,g indicates the sub-dictionary of Dc, in which its atoms

are randomly picked up from the group of cluster g. We also
obtain the mean shape, defined as centroids cc,g associated
with a distinct cluster, which is used for template matching
in the sparse coding stage. Centroids cc,g , representing the
template and a particular pattern of groups, g are found by:

cc,g = 1

|Sg |
∑

t∈Sg

xc,g,Sg = {t|gt = g}.

C. Dictionary Learning

After initializing the dictionary Dc (c = 1 indicates single
channel case, c > 1 indicates multi-channel case), as shown
in Algorithm 3, the unsupervised multi-mode structured dic-
tionary learning is divided into two stages in each iteration:
the sparse coding stage and the dictionary update stage.
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Algorithm 2 Spectral Clustering [30] Based on the Similarity
Matrix
Require: Similarity matrix E ∈ R

T ×T from Algorithm 1 and
the number of clusters G.

1: Construct diagonal matrix W, where W(t, t) is defined as
the sum of t-th row of similarity matrix E.

2: Construct the matrix H = W− 1
2 EW− 1

2 .
3: Calculate v1, v2, . . . , vG , the G eigenvectors of H with the

largest G eigenvalues.
4: Construct the matrix V = [v1 v2 . . . vG ] ∈ R

T ×G and
normalize each row of the matrix V.

5: Apply k-means algorithm [31] to the rows of the matrix V
and assign the cluster gt to the original signal xc,t .

6: Return Clusters vector g

Fig. 4. Illustration of different groups of spikes with distinct shapes. The
red color-coded spikes indicate the centroids (mean shape) associated
with the corresponding groups. The mean shape matching provides
another perspective of similarity in the sparse coding stage.

In the sparse coding stage, we introduce joint-group sparsity
and then solve the sparse representation problem below, using
Orthogonal Matching Pursuit (OMP) [32],

min
ac,g

C∑

c=1

||xc,t − Dc,gac,g ||2
s.t . ||A||group,0 = 1, ||ac,g||0 ≤ S.

Here, we find out the best sparse representation ac,g of each
spike xc,t in the training samples based on each sub-dictionary
Dc,g . Then, we use the linear combination coefficient
λ ∈ (0, 1) to balance the residual of the sparse representation
and the squared Euclidean distance between the spike and its
centroids. Thereby, the cluster g of the spike is determined by
solving the optimization problem below:

min
g

C∑

c=1

{λ||xc,t − Dc,gac,g ||2 + (1 − λ)||Dc,gac,g − cc,g ||2}.

As shown in Figure 4, the squared Euclidean distance
for mean shape matching provides another evaluation of
spikes similarity in the sparse representation stage. Previous
work has demonstrated that using the centroid significantly
improves the accuracy of spike sorting in the CS-based neural
recordings [28]. Given group g of each spike, we define a
trust region set Sg associated with group g. To construct
the trust region set Sg , we add the index of spike t into
it if the spike is represented perfectly in the sparse coding
stage, which indicates the reconstruction error is smaller than
the pre-defined error . Intuitively, the trust region set Sg

Fig. 5. An illustration of how the trust region S performs in principal
component analysis (PCA). As Algorithm 3 iterates from 1 to 10, the per-
centage of spikes in the trust region increases from 29.33 % to 92.00 %,
indicating that most spikes in the training samples satisfy the pre-defined
reconstruction quality after 10 iterations.

Fig. 6. Illustration of the trust region and training error during the iterative
training. (a) indicates the percentage change in trust region S and
(b) indicates average recovery error as dictionary learning iterates
from 1 to 20.

only contains spikes with high reconstruction quality in each
learning iteration.

In the dictionary update stage, we simply fix the sparse
coefficients matrix Ac and update each atom of the dictionary
using the same approach as in the K-SVD [33]. While the
K-SVD updates the dictionary based on the whole training
samples, our approach only updates it based on the current
trust region set S, which is the union of set Sg . Iteratively,
the trust region covers the entire training samples. Figure 5
and 6 illustrate that the trust region set S approaches the entire
training samples after several learning iterations. Furthermore,
we dynamically update the centroid cc,g depending on the
clustering result obtained from the sparse representation stage.
As shown in Figure 6, the average recovery error converges
as the trust region S covers the entire training samples.

Taking advantage of iterative refinement in the dictionary
learning, Algorithm 3 is able to correct the spike sorting error
generated by the dictionary initialization, as shown in Figure 7.
Figure 7(a) shows that Algorithm 1 mistakenly clusters some
spikes, which are denoted as blue dots and distributed in the
cluster of green dots. But as shown in Figure 7(b), after the
dictionary learning, the PCA result illustrates that the spike
sorting performance is refined and intuitively demonstrates the
robustness of the proposed approach.

D. Reconstruction and Spike Sorting Approach

In our CS-based neural recording systems, we adopt the on-
chip random Bernoulli matrix [19] S ∈ R

M×N to compress the
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Algorithm 3 Unsupervised Multi-Mode Structured Dictionary
Learning
Require: Initialized dictionary Dc, training data Xc =

[xc,1 xc,2 . . . xc,T ], where c = 1, 2, . . . , C (C = 1 indi-
cates single channel). Clusters vector g, number of clusters
G, sparsity S, reconstruction error , linear combination
coefficient λ ∈ (0, 1) and number of maximum iteration
max I ter .

1: while i ter ≤ max I ter do
2: Set Sl = ∅, ∀l.
3: Solve the representation problem via Orthogonal Match-

ing Pursuit [32],

minac,g

∑C
c=1 ||xc,t − Dc,gac,g||2 s.t .

||A||group,0 = 1, ||ac,g||0 ≤ S,∀g, n.

4: Determine the cluster g for the n-th signal by solving
following problem,

ming
∑C

c=1{λ||xc,t − Dc,gac,g||2
+(1 − λ)||xc,g − cc,g||2}.

5: If
∑C

c=1 ||xc,n − Dc,gac,g||2 ≤ error , then add n into
Sg .

6: Codebook update: we use the same method of approx-
imation K-SVD [34] for updating each atom based
on spikes belonging to S = ⋃G

1 Sg .
7: Centroids update:

cc,g = 1
|Sg |

∑
t∈Sg

xc,g

∀g = 1, 2, . . . , G, c = 1, 2, . . . , C, t = 1, 2, . . . , T .

8: Set i ter = i ter + 1.
9: end while

10: Return Dc = [Dc,1Dc,2 . . . Dc,G ] and updated the cen-
troids cc,1cc,2 . . . cc,G

Fig. 7. An example of robustness of spike sorting from the perspective
of sparse coding, visualized in the PCA domain. The iterative refine-
ment helps correct the mistakenly sorted spikes generated from the
initialization.

signal x ∈ R
N into the measurement y ∈ R

M . Mathematically,
y = Sx and M << N . The Bernoulli matrix, of which
the element is 0 or 1, is hardware friendly [19]. For each
channel c, we adopt the same Bernoulli matrix S to sense the
neural signal xc into the measurements yc. Given the trained
dictionary Dc, the sensing matrix S, the centroids cc,g and the

Algorithm 4 Reconstruction and Spike Sorting Approach
Require: The initialized dictionaries Dc, the centroids cc,g ,

measurements yc, where c = 1, 2, . . . , C (C = 1 indicates
single channel) and random Bernoulli matrix S. Number
of clusters G, sparsity S and linear combination coefficient
λ ∈ (0, 1).

1: Solve the representation problem via Orthogonal Matching
Pursuit [32],

minac,g

∑C
c=1 ||yc − SDc,gac,g||2 s.t . ||ac,g||0 ≤ S,∀g.

2: Determine the cluster g of spikes by solving following
problem,

ming
∑C

c=1{λ||yc − SDc,gac,g ||2 +
(1 − λ)||yc,g − Scc,g||2}.

3: Return The recovered signal x̂c = Dc,gac,g and cluster g.

measurements yc, we reconstruct the signal x̂c and determine
the cluster g as shown in Algorithm 4.

E. Dictionary Update

In real-time neural recording experiments, it is impractical
to observe the original signal x because the CS-based sys-
tem only transmits the compressed information y. Therefore,
the reconstruction quality cannot be quantitatively evaluated by
x and the recovered signal x̂. Normally, the trained dictionary
is fixed during the recording. If the CS-based neural recording
system encounters a new spike that is dramatically different
from spikes from the training samples, it might be diffcult
to reconstruct the spike sparsely using the dictionary, which
significantly degrades the quality of systems. To address this
challenge, the dictionary update has to be adaptive to change in
spikes. Fortunately, the strong correlation between the recon-
struction quality of the original signal x and the reconstruction
quality of the measurement y has been found to quantify the
recording performance [19]. It helps in adapting the trade-off
between the reconstruction quality and compression ratio.
Instead of evaluating the reconstruction quality of x, which
cannot be observed in a CS-based neural recording system,
the signal-to-noise distortion ratio (SN DR) of y is adopted to
efficiently quantify the online performance of the CS-based
neural recording systems. When SN DRy drops below the
pre-defined threshold, the CS-based system will automatically
switch to the non-CS mode for collecting more samples at the
full bandwidth for the dictionary update.

IV. EXPERIMENTS

In this section, we compare the reconstruction and spike
sorting performance of our proposed approach with the
other CS-based approaches on both single-channel and multi-
channel databases. In each training, the database was randomly
divided into two halves: one for training, and the other for
testing. The quality of reconstruction is measured in terms of
the SNDR, which is defined as:

SN DR = 20 × log
||x||2

||x − x̂||2 ,
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where x and x̂ indicate the original and recovered signals,
respectively. The spike sorting performance is measured in
terms of classification accuracy (CA), which is defined as:

C A = # of Correctly Sorted Spikes

T otal Number o f Spikes
× 100%.

All neural spikes are extracted from the raw data using a
window of pre-defined length, and aligned properly before
training and testing. In each experiment, the same Bernoulli
matrix is adopted to compress the neural signal. We construct
the K-SVD dictionary and the data dictionary with group
structures based on the training samples. Then, we adopt
OMP [32] and sparse representation classifier (SRC) [35]
for recovery and spike sorting. For the proposed approach,
we assume that the number of clusters G is pre-defined and
the dictionary is learned by Algorithm 3 in an unsupervised
manner. Additionally, we assign the same number of spikes
to each group in the training and testing samples to eliminate
the clustering bias.

Our experiments were implemented in MATLAB on a PC
with Intel Core i7 and 16 GB RAM. The average compu-
tational time for the dictionary training was 20 seconds on
average. The number of iterations was 10 and each training
database consisted of 1000 samples of pre-defined length.
It took only 6 ms to reconstruct and sort a spike.

A. Single Channel

We first compared the reconstruction performance between
the proposed CS-based approach and the other dictionary
learning approaches using the K-SVD, data dictionary and
Wavelet dictionary on the synthetic Leicester database [27]
and the Massachusetts General Hospital (MGH) database [26].
The Leicester database consists of neural signals of length 128,
and the MGH database consists of neural signals of length 32,
recorded from primates (monkeys), “Pogo” and “Romeo”. The
MGH database was collected at the MGH at a sampling rate
of 40 kHz.

Furthermore, we compared the spike sorting accuracy of our
CS-based approach to the other CS-based approaches using the
signal-dependent dictionaries. The Leicester database consists
of three classes of neural spikes grouped into two categories:
“Easy” and “Difficult”, which indicates the difficulty level of
discriminating spikes. Generally, “Difficult” indicates a lot of
noise in spikes. The MGH database contains two or three
classes of spikes that have been manually sorted at the MGH.

Tables I and II, and Figure 8 demonstrate the reconstruction
and spike sorting performance on the Leicester database at
compression ratios of 20:1 and 10:1. The proposed approach
outperforms the other CS-based approaches, and achieves an
average gain of 2 dB and 4% in terms of SNDR and classifica-
tion accuracy on the “Easy” database at the CR of 20:1. For the
“Difficult” database, the approach attains more than 90% spike
sorting success rate, while achieving a CR of 10:1 to 20:1.
Tables III and IV show the reconstruction and spike sorting
performance of the MGH “Pogo” and “Romeo” databases,
respectively. Here too, the proposed approach outperforms the
other CS-based approaches. Especially, the proposed approach
shows more than 90% spike sorting success rate at the CR

TABLE I
COMPARISON OF RECONSTRUCTION PERFORMANCE (IN SNDR) OF

DIFFERENT CS METHODS ON “LEICESTER”

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE (IN CA) OF

DIFFERENT CS METHODS ON “LEICESTER”

TABLE III
COMPARISON OF RECONSTRUCTION AND CLASSIFICATION

PERFORMANCE OF DIFFERENT CS METHODS ON “POGO”

TABLE IV
COMPARISON OF RECONSTRUCTION AND CLASSIFICATION

PERFORMANCE OF DIFFERENT CS
METHODS ON “ROMEO”

of 10:1, and achieves an average gain of 30% over other
methods. Figure 9 intuitively illustrates the spike sorting result
at the CR of 20:1 and 10:1 in the PCA domain. The pink,
green and blue dots indicate distinct groups of spikes in
the testing samples, while red dots indicate spikes that are
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Fig. 8. Examples of reconstruction performance of single-channel neural
recordings. For (a)-(d), recovered signals (red) still preserve the major
features of original signals (blue) at CR of 20:1 and 10:1, respectively.
(a) and (b) demonstrate synthetic spikes from the Leicester data-
base [27], while (c) and (d) demonstrate real spikes from the MGH
database [26].

Fig. 9. Examples of spike sorting performance shown in the PCA
domain. (a) and (b) illustrate the spike sorting result of Leicester’s “Easy”
and “Difficult” databases at a CR of 20:1. (c) and (d) illustrate the spike
sorting result of MGH’s “Pogo” and “Romeo” databases at a CR of 10:1.

incorrectly sorted. As shown in Figure 9, most of the spikes
are correctly sorted and the spike sorting success rate can
still achieve more than 90% accuracy, even after the CR
increases to 20:1, which means we only use 5% information to
reconstruct and sort the spike. The performance on the MGH
database achieves more gains in terms of the recovery quality
and spike sorting success rate compared to the performance on
the Leicester database, which indicates the proposed approach
is more robust to highly noisy signals.

B. Multi-Channel

In multi-channel experiments, we also compared the recon-
struction quality and spike sorting success rate between the
proposed approach and other methods. We evaluated the
performance comprehensivley on the hc-1 (12 databases),
whose neural signals were recorded by the tetrodes setup [27].

Fig. 10. An example of reconstruction performance of multi-channel
neural recordings on the hc-1 database [27] at a CR of 8:1. Blue and
red spikes indicate the original neural spikes and the recovered neural
spikes, respectively. Spikes (not well aligned) and inter-spike intervals
are reconstructed by Algorithm 4 at the window size of 128.

The hc-1 database was recorded from the hippocampus of mice
in in vivo experiments. The tetrodes setup consists of four
electrodes and one reference that indicates the firing of neu-
rons. Based on the reference, we extracted neural spikes of
length 64 from the raw data. The reconstruction quality is
measured in terms of the SNDR. However, the database has
no prior labels, which means there was no benchmark for us to
evaluate the spike sorting success rate quantitatively. Thereby,
in this session, we intuitively demonstrate the spike sorting
performance using the PCA. Taking advantage of the PCA,
we map the spike sorting result into the PCA domain, where
different colors intuitively indicate different clusters.

Table V indicates that the proposed approach achieves an
average gain of 4 to 5 dB over the other CS-based approaches
in terms of the SNDR in multi-channel reconstruction.
Figure 10 illustrates the multi-channel reconstruction example
on the hc-1 database at a CR of 8:1. The blue signals denote
the original spikes recorded from the tetrodes setup, which
show similar pattern and correlation among the four channels
as shown in Figure 10. The red signals denote the spikes
recovered by the proposed CS-based approach. As shown in
Figure 10, the recovered signals still preserve most of the
features, even though only 12.5% of the information of the
original signals is used for the reconstruction. The proposed
approach is also able to sense and reconstruct neural signals in
the continuous time domain, including the low activity region
between spikes.

Figure 11 shows the multi-channel spike sorting perfor-
mance at a CR of 16:1 in the PCA domain. Although only
5% of the information is collected for the spike sorting,
the clustering results (color coded dots) are consistent with
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TABLE V
COMPARISON OF RECONSTRUCTION PERFORMANCE (IN SNDR) OF DIFFERENT CS METHODS ON “HC-1”

Fig. 11. An example of spike sorting performance of multi-channel neural
recordings based on the hc-1 database [27]. Figure 11 (a)-(d) indicate the
clustering results of channels 1-4, respectively. Different colors represent
different clusters.

the distinct feature of the original spikes in the PCA domain.
As shown in Figure 11, the distribution of the principal
components among different channels illustrates that neural
spikes share similar pattern, which implies correlation in the
multi-channel neural recordings.

C. Energy Efficient CMOS Implementation

Typically, a 1000-electrode silicon probe generates data on
the order of 300 Mbps in which each channel is sampled
at 30 KHz while providing at least 10-bit resolution per
sample [10]. For a wired system suffered from the high data
rate, the overall power consumption is reduced from 50 mW
to 5 mW with the 10× CR. Furthermore, from the perspective
of wireless data transmission, at the CR of 10:1 the typical
data rate 100 Mbps is further decreased to 10 Mbps. Given the
same power budget, the transmission distance can be extended
from 2m to 5m. Additionally, we can also achieve the same
distance of 2m using 10 dB less transmitter power.

Based on the proposed CS framework, we have imple-
mented the multi-channel CS neural recording systen in a
180 nm CMOS process [19], [36]. This system improves
the power efficiency on the order of a few hundred nW per
electrode. Given the CR of 10:1, the power consumption of our
implementation is further reduced to 0.83 μW per electrode.

V. CONCLUSION

In this paper, we presented an unsupervised multi-mode
CS approach for neural recording systems. We incorporate
the joint-group sparsity in the dictionary learning to extend
previous works to multi-channel neural recordings. Addition-
ally, we take advantage of spectral clustering, group structure
and template matching to enable spike sorting in real-time
experiments in an unsupervised manner.

The approach was evaluated on both synthetic and real
databases. The experimental results demonstrated that our
approach significantly improved both the reconstruction qual-
ity (>8 dB) of neural signals and the spike sorting success
rates (>90 %) at a high compression ratio (8:1 to 20:1).
Our proposed framework, which is hardware friendly, can be
integrated in CS-based implantable microsystems for in vivo
neural recordings. From the perspective of hardware design,
the proposed approach further enables energy-efficient CMOS
implementations in terms of power consumption. In addi-
tion, it also enables online spike sorting in real-time neural
recordings, which provides more feasibility for neuroscientists
compared to conventional offline spike sorting techniques.

In order to realize a large-scale integration of neural record-
ing systems, we plan to study the quantitative details of the
correlation between spikes. By incorporating more structures
in the CS framework, we will be able to further improve the
performance in terms of reconstruction quality and spike sort-
ing accuracy. Additionally, a sophisticated online dictionary
update approach will also be introduced in the CS framework
to enable a more adaptive real-time neural recording system
in the future.
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