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Abstract—We present a stochastic Bayesian neuron (SBN) that 
codes for a binary hidden variable and the temporal dynamics of 
which can be explained as a Bayesian inference. We show that 
our SBN combines the maximum likelihood of its synaptic inputs 
and the prior probability of the hidden variable to infer the 
presence of the hidden variable. Probabilistic models are 
computationally complex, which makes them difficult to 
implement using standard state-of-the-art digital 
implementation. Here, we employ stochastic logic elements to 
implement the SBN using minimum hardware resources. The 
SBN could be used as a basic element to develop a Bayesian 
processor that works on probability instead of deterministic 
logic. 

I. INTRODUCTION  
Animals are constantly faced with the challenge of 

estimating external world states using noisy sensors. Various 
psychophysical experiments suggest that biological neurons 
estimate Bayesian posterior probabilities of hidden states using 
observations from noisy sensors [1]–[4]. In recent years, 
Bayesian models are being increasingly used to explain 
sensory perception, motor control, and reasoning, based on an 
estimation of underlying hidden variables from sensory 
observations [5]–[7]. However, none of the existing neuron 
models could be used as a basic element to perform Bayesian 
inference for estimating the hidden variable. An exception is 
the Bayesian neuron model by Deneve et al. [8] that has been 
used to explain the underlying theory of neural system 
processing, but requires computationally expensive arithmetic 
to implement on hardware for real-time probabilistic 
processing.  

Modern computing hardware is constrained by stringent 
application requirements such as extremely small size, low 
power consumption, and high reliability. Further, physical 
phenomena, such as manufacturing process variations and soft 
errors, give rise to error-prone behaviour that can be best 
described in probabilistic terms. Consequently, unconventional 
computing methods, such as stochastic computation (SC), that 
directly address these issues are of increasing interest. A basic 
feature of SC is that numbers are represented by bit-streams 
that can be processed using simple circuits. The numbers 
themselves are interpreted as probabilities under both normal 
and faulty conditions. For example, multiplication can be 
performed using a stochastic circuit consisting of a single AND 
gate. Consider two binary bit-streams that are logically 
ANDed. If the probabilities of seeing a 1 on the input bit-
streams are p1 and p2, then the probability of 1 at the output of 

the AND gate will be p1 × p2, assuming that the two bit-
streams are suitably uncorrelated or independent.  

Here, we propose a stochastic Bayesian neuron (SBN) that 
codes for a binary hidden variable and could be useful as a 
basic building block in probabilistic processors. We show that 
the SBN can compute complex probabilistic arithmetic and can 
be implemented using simple digital circuits. We show the 
hardware implementation of a simple SBN model that 
calculates the odds ratio of the maximum a posterior of the 
hidden variable without requiring any normalisation term. Our 
novel SBN model is inspired from the stochastic theory 
proposed by Gaines [9] and has the advantage of requiring an 
extremely small silicon area for implementation. Our approach 
is robust to soft errors and this will facilitate the development 
of Bayesian computing machines in nanometer fabrication 
technologies. 

II. OVERVIEW OF THE SBN MODEL  
Our problem formulation of the SBN model is similar to 

that proposed by Deneve [8]. We consider that each neuron 
codes for a binary hidden variable h. This variable could 
correspond to a property of the real world such as the presence 
or absence of an object or the direction of motion in the 
neuron’s receptive field. The hidden variable could also be 
much more abstract and represent statistical regularities of the 
sensory input and motor output. The variable is “hidden” from 
the neuron that tries to infer its state from its synaptic spikes. 
As an illustrative example, we will consider that h represents 
the presence or absence of a vertical bar at a certain position on 
the retina. The synaptic inputs become activated by external 
hidden variables with particular probabilities (Fig. 1). 

The synaptic inputs of the SBN can be represented as si
t, 

when the synapse i is activated between time t and t + dt. Here, 
the synaptic inputs can be described by a Poisson process. The 
probability of activation of the ith synapse, given the hidden 
variable h is present, is defined as P(si

t | h) = gi
on/gi

off. P(si
t | h̅) = 

gi
off/gi

on is the probability of the ith synapse being activated, 
given the hidden variable h is not present (i.e., h̅). The synapse 
i would be excitatory if gi

on > gi
off, else it would be inhibitory. 

gi
on and gi

off are the parameters of the synaptic circuit.  

We can formulate the inference in the SBN as a Bayesian 
inference problem in terms of the odds ratio of the hidden 
variable h, given all the synaptic inputs received in the past, 
using the equation: 
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Fig. 3. Neuron circuit in the SBN model. The circuit performs the 
inference of the external hidden variable using the odd of the likelihood 
ratio computed by the synapse circuits, and the prior probability of hidden 
variable. 

  Ωt = P(h | St)/P(h̅ | St) 

Using Bayes theorem and considering that all the synaptic 
inputs are independent to each other, 

Ωt = [P(St | h) × Ppr(h)] / [P(St | h̅) × Ppr(h̅)]  

    = [Ppr(h) / Ppr(h̅)]  × ∏ iki=1 [P(si
t | h)/ P(si

t | h̅)]           (1) 

where, Ωt is the membrane potential of the SBN, St is the 
vector of the binary variables corresponding to k synaptic 
inputs received by the SBN at time t, Ppr(h)/Ppr(h̅) is the odds 
ratio of the prior probability of the hidden variable h, and gi

on/ 
gi

off is the synaptic weight of the ith synapse. 

III. HARDWARE IMPLEMENTATION USING SC  

A. Synapse Circuit 
In Fig. 1, we have described the SBN model, which is 

responsive to the presence of a vertical bar in its receptive 
field. Synapses of the SBN calculate the odds ratio of 
likelihood in the formulation of the Bayesian inference 
problem as in equation (1). Fig. 2 shows a synapse circuit 
whose output goes to the SBN as a train of spikes. This 
synapse circuit is inspired by the ADDIE (ADaptive DIgital 
Element) circuit proposed by Gaines [9].  

The probability P(S) of the output variable S, is (count/2d), 
where d is the bit-width of the counter. The dual-line 
complementary output (P(S) and P(S̅)) of the synapse circuit 
will represent the ratio of the two input variables. The detailed 
derivation of a similar circuit can be found in previous works 
[9], [10]. The odds ratio for the output of the synapse circuits 
can be written as: 

 P(S)/P(S̅) = P(S)/(1− P(S)) = gon/goff, if h 

                 = goff/gon, if h̅ 

In a synapse circuit, the value of N could be as low as 1 
(i.e., single flip-flop). The counter circuit is important because 
it converts the ratio of two independent variables into an odds 
ratio of a single variable. 

B. Neuron Circuit 
The membrane potential of the SBN represents the odds 

ratio of the external hidden variable as defined in equation (1). 
Using the principles of SC, we can implement the SBN by 
multiplying the odds ratio of the synaptic inputs with the prior 
odd of the hidden variable using a simple AND gate. In this 

example, we have considered three synapses (Fig. 3). P(s1), 

P(s̅1), P(s2), P(s̅2), P(s3), and P(s̅3) are the outputs of three 
synapse circuits (Fig. 3), and P(h) and P(h̅) are the prior 
probabilities of the hidden variable. The spiking probability 
P(O) of the neuron has an underlying inhomogeneous Poisson 
process and generates a spike based on the instantaneous 
membrane potential, Ω. We can write the equation of the 
neuron circuit as: 

U = P(s1) × P(s2) × P(s3) × Ppr(h) × P(O̅) 

D = P(s̅1) × P(s̅2) × P(s̅3) × Ppr(h̅) × P(O) 

Incoming spikes at terminals U and D represent excitatory 
and inhibitory spikes, respectively (Fig. 3). The membrane 
voltage, Ω, is represented as a counter, which acts as an 
integrator for the incoming excitatory and inhibitory spikes. 
The counter has a width of d bits. Thus, the maximum state 
value is N = 2d – 1 and the total states are N + 1. 

The output spike of the neuron can be written as: 

P(O) = ∫ U − D  

Using the above equations, 

P(O) = ∫ [P(S) × Ppr(h) × P(O̅)] – [P(S̅) × Ppr(h̅) × P(O)] 

where, 

P(S) = P(s1) × P(s2) × P(s3), and P(S̅) = P(s̅1) × P(s̅2) × P(s̅3) 

Rearranging the above equation, 

P(O)′ = dP(O)/dt = [P(S) × Ppr(h) × P(O̅)] – [P(S̅) × Ppr(h̅) × 
P(O)] 

P(O)′ + [P(S̅) × Ppr(h̅) × P(O)] = P(S) × Ppr(h) × P(O̅) 

 
 

Fig. 1. Model of the stochastic Bayesian neuron (SBN). 
 

 
Fig. 2. Synapse circuit in the SBN model. The circuit generates spike 
trains based on its internal parameters gon and goff as the evidence of the 
external hidden variable. 

 



 

 
Fig. 4. Characteristics of the SBN. (A) Mean membrane voltage of the SBN across 20 different trials in response to the external hidden variable, (B) Inter-
spike interval (ISI) of the output spikes of the SBN for a single trial. 

 

 
 
Fig. 5. Evolution of membrane voltage for different time constants, i.e., 
different counter bit-widths, (A) 3-bit, (B) 5-bit, (C) 7-bit. The blue square 
indicates the presence of the hidden variable. The red and black curves 
show the mean membrane voltage across 20 trials and 1 trial, respectively. 

Dividing the above equation by P(O̅), and assigning Ω = 
P(O)/P(O̅), we get: 

Ω′ + Ω × (P(S̅) × Ppr(h̅)) = P(S) × Ppr(h)           (2) 

Equation (2) is a first-order differential equation. At 
equilibrium, the change in the output probability is zero, i.e. Ω′ 
= 0, which will give a stationary solution as in equation (3). 

Ω(n) = [P(S) × Ppr(h) / P(S̅) × Ppr(h̅)](1 – e-n/N)          (3) 

where, N is the time constant of the dynamical system and 
n is the number of discrete time steps. 

When n >> N, the steady state solution would be: 

Ω(n >> N) = P(S) × Ppr(h) / P(S̅) × Ppr(h̅) 

This shows that the SBN can perform the Bayesian 
inference of an external hidden variable using a simple circuit. 
We have explored the dynamics of the SBN in the results 
section below. 

IV. RESULTS 

A. Inference by a single neuron 
In Fig. 4A, we show the mean membrane voltage (in red) 

across 20 different trials. It is evident that the membrane 
potential has higher values when the external hidden variable 
(in blue) is present. We further plotted the output spikes of the 
SBN across different trials and found that the spike density is 
higher in the presence of hidden variable. In this scenario, we 
have considered three synapses, with gon1/goff1 = 0.9/0.5, 
gon2/goff2 = 0.3/0.4, and gon3/goff3 = 0.8/0.3. We used 6-bits 
counter as a membrane capacitance to store the incoming 
synaptic charges. Fig. 4B shows the inter-spike interval of the 
output spikes of the SBN for a single scenario. It can be seen 
that it follows the Poisson distribution, with a rate parameter of 
2.53. 

In Fig. 5, we demonstrate the dynamics of the membrane 
potential of the neuron for various time constants, N (equation 
[3]), for different counter sizes (3-, 5-, and 7-bit). It can be seen 
that a smaller time constant results in a higher variance in the 
prediction, though the response time is lower.  

B. Cue coupling as a hierarchical inference  
We consider a simple example, which assumes a hidden 

variable (h) causing two cues, visual (V) and auditory (A). We 
consider three synapses for each cue, with gonV_i = gonA_i and 
goffV_i = goffA_i. Their values for these examples are gon1/goff1 = 
0.5/0.2, gon2/goff2 = 0.8/0.1, and gon3/goff3 = 0.8/0.3. We have 
used a 7-bit counter as the membrane charge storage. We have 
considered a strong prior for the visual cue (0.5) compared to 



 
Fig. 6. Simulation of a simple hierarchical Bayesian network. (A) Schematic of the network (B) Evolution of membrane voltage of neurons activated by visual 
cue (red), auditory cue (green), and combined visual and auditory (blue) cues. Red and green rectangles show the presence of visual (xV) and auditory (xA) 
hidden variables, respectively, with some overlapping areas. 

the auditory cue (0.01). The inference in the final neuron can 
be written as: 

Ω = P(h | V,A)/ P(h̅ | V,A) 

   = P(V,A|h) × Ppr(h) / P(V,A| h̅) × Ppr(h̅) 

Assuming both cues are independent of each other, 

 Ω = P(V|h) × P(A|h) × Ppr(h) / P(V| h̅) × P(A| h̅) × Ppr(h̅) 

As shown in Fig. 6, the membrane voltage of the auditory 
neuron has a larger time constant compared to that of the visual 
cue because of a prior, and this makes the auditory neuron less 
confident about the external hidden variable. The activation of 
the VA inference neuron is higher when both V and A cues are 
present as compared to when a single cue is present. 

V. CONCLUSIONS 
In this paper, we have presented a Bayesian spiking neuron 

model. This is one of the first neuron models to perform 
Bayesian inference, which can be implemented using a very 
simple circuit. We have shown the dynamical behaviour of this 
neuron model, and the manner in which it can be used to build 
a larger network to perform hierarchical Bayesian inference. 
Future work will include incorporation of learning of the model 
parameters. We envision that this neuron model will serve as a 
basic building block to develop Bayesian processors, which 
will work on probabilistic arithmetic rather than deterministic 
logic. 
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