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Abstract—In the last decade, computational neuroscience and 
machine learning communities have witnessed the emergence of 
several algorithms where an input signal is randomly projected 
to a higher dimensional space via a nonlinear activation 
function. These methods are increasingly popular for regression 
or classification tasks, but this kind of neural network has 
remained difficult to implement efficiently in hardware. This is 
partly due to the all-to-all connectivity required between the 
input and hidden layers in these networks. The concept of using 
receptive fields (RF) for classification tasks stems from biology, 
in which sensory neurons often respond to a limited spatial 
range of the input stimulus. Incorporating this methodology into 
a classification system often yields an increase in performance. 
This paper presents an SRAM-based implementation of the RF 
approach to implement this kind of neural network on 
hardware. Since SRAM has a much smaller footprint compared 
to logic gates, this implementation is much more efficient in 
terms of hardware resources. The system was implemented and 
verified on an FPGA to demonstrate the efficiencies and 
flexibility of this approach for MNIST digit recognition task. 

I. BACKGROUND 
The Extreme Learning Machine (ELM) is an analytical 

technique for solving classification and regression tasks in 
which the output layer weights are solved using a single-step 
pseudoinverse approach [1]. ELM networks have been used to 
solve a wide variety of different problems, ranging from non-
linear predictive motor control [2] and electricity load 
prediction [3] to face detection [4]. Additionally, ELM 
techniques have been extended to deep learning [5] and 
MapReduce implementations [6]. Iterative methods for 
calculating the output weights in the ELM networks, such as 
the Online Pseudoinverse Update Method (OPIUM) [7], 
remove the problem with learning very large datasets, for 
which the memory needed to perform the pseudoinverse 
operation would otherwise become too large. Furthermore, 
these online methods allow the application of ELMs to non-
stationary datasets [7].  

Despite their efficiency, ELM networks remain difficult to 
implement in hardware due to the all-to-all connectivity 

between the input and hidden layer neurons. This requires 
significant hardware resources that increase dramatically as 
the hidden layer size increases. Hardware solutions generally 
assume fixed input layer and hidden layer sizes as well, 
greatly reducing the flexibility of these systems and their 
applicability to different datasets [8], [9].  

 In order to alleviate these problems, a new network 
structure based on a receptive field (RF) approach [10][11] is 
presented. This network uses a novel encoding SRAM-based 
addressing implementation to the RF approach. The results 
presented in this paper show that this approach can yield 
higher accuracies than the ELM networks that use the all-to-all 
connectivity.  

This paper begins with a short summary of the RF 
approach and the ELM classifier. It then discusses some of the 
difficulties encountered when implementing these techniques 
in hardware. The hardware-optimised RF approach is then 
presented and described; followed by the results section and a 
discussion and comparison to existing convolutional neural 
networks.  

This work has been supported by the Australian Research Council 
Grant DP140103001.  
 

 
Fig. 1. Illustration of the receptive field approach. Each 
hidden layer neuron will only receive inputs from only a 
small random rectangular receptive field in the original 
image plane. The figure was adapted from [11]. 
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II. RECEPTIVE FIELD APPROACH 

A. Basic Receptive Field Approach 
The concept of using receptive fields ([11]. see Fig. 1) for 

classification tasks stems from biology, in which sensory 
neurons often respond to a limited spatial range of the input 
stimulus. Incorporating this methodology into a classification 
system often yields an increase in performance [11] and also 
has the added advantage of resulting in a sparse mapping 
between  layers. When used in an ELM, the RF approach has 
shown to produce similar accuracy to conventional ELM 
approaches [11], but with an added advantage of easier 
implementation in hardware. Furthermore, the locations of the 
receptive fields can vary with the dimensions of the input data, 
with only the mapping between hidden layer neurons and their 
respective receptive fields needing to be changed. This is 
particularly beneficial when dealing with hardware 
implementations, which often require a fixed number of 
neurons in each layer.   

The biggest problem with the RF approach is the difficulty 
in implementing it directly using hardware, especially when 
the position, shape, and size of the RF need to be determined 
randomly or via a flexible pattern, requiring random access 
across all the dimensions of the input data.  

B. Improved RF approach 
In order to effectively implement the RF approach in 

hardware, the proposed system makes use of a vectorised 
version of the input and a set of shift registers. The RF 
implementation presented here selects regions in the input 
image through sequential indexing from a shift register. This 
allows varying receptive fields to be extracted from the input 
image by simply changing the starting position within the shift 
register. It is important to note that the receptive fields 
generated using this approach are not always rectangular, and 
it is not possible to generate any arbitrary region using this 
approach. Despite these limitations, the system still performs 
very well, as demonstrated in the results section.  

 Fig. 2 demonstrates how the improved RF approach 
operates on the 28x28 pixels, each of which is an 8-bit grey-
scale value, input from the MNIST dataset [12]. 
Mathematically, the proposed RF approach will first reshape 
the input image from 28x28x8bit to 784x8bit and then shift 
the RF across this reshaped image with a step size of 16 
pixels. Here the region size is set to 128 pixels.  

Fig. 2 shows the input shift register on the left and the 
resulting receptive field overlaid on the input image on the 
right at three different steps. When starting from the first 
pixel, the receptive field encompasses the first three rows of 
the input image as in Fig. 2a. The selected region will then be 
used to generate a stimulus to the first neuron of the hidden 
layer by multiplying with input weights, which are randomly 
generated for each hidden layer neuron. In the next step, when 
the starting index is moved, the receptive field shifts and 

selects a different region as shown in Fig. 2b. The selected 
region will then be used to generate a stimulus to the second 
neuron of the hidden layer by multiplying with its 
corresponding input weights.  

The procedure will be repeated many times to spread the 
input pixels randomly to a higher dimensional space. Fig. 2c 
shows the selected region for shifting step 16. After the 49th 
step, which is the last step of the reshaped image, the index 
will return to the starting point.   

III. HARDWARE IMPLEMENTATION 

A. Topology 
In our previous work [13], we have presented an FPGA 

implementation of a massively-parallel pattern recognition 
system, which consists of an input layer (the encoder), a 
hidden layer with 8192 neurons and an output layer. It consists 
of a physical encoder, a physical neuron, a global counter, and 
a weight buffer. In that system, the encoder and the hidden 
layer are both implemented using a time-multiplexing (TM) 
approach [14]–[19], which leverages the high-speed of digital 
circuits. The global counter processes the TM encoders and 
neurons sequentially. The decoding weights of the physical 
neuron are stored in a weight buffer while the input digit 
remains static until all the TM neurons finish their processing. 
In every clock cycle, the TM encoder will generate the hidden 
neuron input from the input digit, and the TM neuron will pass 
this signal through a non-linear activation function and 
multiply it with the decoding weights for the generation of the 
output value. The output neurons then simply sum across all 
TM neurons. 

 
Fig. 2. Improved RF approach.  
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In this previous work, the physical encoder was 
implemented using an all-to-all connectivity, which consumed 
significant amounts of hardware resources. This is indeed one 
of the most important motivations for developing an encoder 
using the RF approach. Fig. 3 shows the topology of the 
encoder, which consists of a pattern FIFO, a shift register 
array, a random weight generator, a parallel adder and a global 
counter.  

B. Pattern FIFO and Shift register array 
The pattern FIFO, as shown in Fig. 3, is efficiently 

implemented on an SRAM with a size of 512x128bits. Hence 
the maximum size of the input pattern is 8192 with 8-bit grey-
scale values. The shift register array consists of eight 128-bit 
shift registers, which are all sequentially connected.  The input 
of the shift register array is connected to the output of the 
pattern FIFO and all these eight shift registers are connected to 
the parallel adder array. 

When an input pattern arrives, it is stored in the pattern 
FIFO, which is assumed to be empty. Next, the shift registers 
are initialised. This initialisation has eight shifts: the first 128 
pixels of the pattern (128x8bits) are moved into the shift 
register array by reading the pattern FIFO for eight clock 
cycles and shifting the shift registers eight times. As the 
pattern FIFO will clear its contents once it has been read out, 
the output of the pattern FIFO also needs to be written back 
into the pattern FIFO for keeping the pattern during the whole 
encoding procedure. Otherwise, the pattern FIFO would be 
empty after the 49th shift. 

After the eight initial shifts, one each clock cycle, the 
global counter will read the pattern FIFO and shift the register 
array by one. For instance, if the hidden layer has 8192 
neurons, this RF generation operation needs to be performed 
for 8192 times. Since it is a pipelined design, the output to the 
parallel adder is still being generated every clock cycle (with a 
latency of one clock cycle). The pattern FIFO will be flushed 
right after the completion of the generation of all the regions.  

C. Random weight generator 
The random weight generator will generate a uniformly 

distributed binary random weight (-1 and 1) for each pixel of 
the input digit. These weighted pixels will be summed to 
generate the stimulus for each neuron in the hidden layer. The 
use of these binary weights saves significant hardware 
resources in the FPGA, since otherwise we would need 128 
multipliers to compute the multiplication between all pixels 
and their corresponding random weights.  

For digital implementations, the most efficient way to 
generate random numbers is to use linear feedback shift 
registers (LFSRs). Hence, we use LFSRs to generate the 
binary random weights and the output of the LFSR will be 
interpreted following the 2’s compliment rule: 0 for +1 and 1 
for -1. Input pixel values (8-bit grey-scale) are simply 
concatenated with the binary weights, resulting in weighted 
pixel values in 2’s compliment notation (9-bit values).  

Since an LFSR will go through all possible values in its 
cycle, its output will not be balanced at each shift. In other 
words, the number of the 0’s and 1’s are often not the same, 
which will affect the performance significantly, because the 
weighted pixels will be nearly all negative or positive and the 
generated stimulus for hidden neurons will become extremely 
large in amplitude. For the generation of balanced binary 
random weights, instead of a naïve implementation using one 
128-bit LFSR, we use twelve 11-bit LFSRs with different 
seeds, each of which generates an 11-bit random number. For 
most random seeds, this results in a more evenly distributed 
number of 0’s and 1’s. 

All these LFSRs will reload their own initial seed on the 
arrival of an input pattern. After that, they keep generating 
random numbers until a new input pattern arrives. In this way, 
we can guarantee that the encoder will generate the exact same 
set of random weights for all the incoming patterns. This “on 
the fly” generation scheme also reduces the usage of memory 
significantly, as there is no requirement for storing the random 
weights and only the LFSR seeds need to be stored. 

 

 
Fig. 3. The structure of the SRAM-based implementation of the improved RF approach.  
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D. Parallel adder array 
The parallel adder array sums the 128 weighted pixels for 

generating the input to the hidden layer neurons. A naïve 
implementation would need a 128-input 9-bit parallel adder 
and create a large delay (~20 ns). Instead, we use a 3-stage 
pipeline consisting of sixteen 8-input 9-bit adders, four 4-input 
12-bit adders, and one 2-input 15-bit adder respectively. 
Because of the pipelined design, the input to the hidden layer 
is still generated every clock cycle, but with a latency of three 
clock cycles. When the system clock runs at a frequency of 
250MHz, this pipelined design is four times quicker than the 
naïve implementation. 

IV. MEASUREMENT RESULTS 
To validate the SRAM-based approach, we used it to 

implement the encoder in the massively-parallel pattern 
recognition system in our previous work [13], while keeping 
the remainder of the system remains exactly the same. The 
pattern recognition system was implemented on an Altera 
Cyclone V FPGA (on a Terasic Cyclone GX starter kit). The 
encoder itself uses less than 5% of the hardware resources 
(Table I). 

We tested the pattern recognition with the MNIST dataset. 
10 test runs were conducted, each with a different random 
seed. Since the goal of this exercise was to investigate the 
performance of the SRAM-based implementation, rather than 
to find the best possible performance, we used a simplified 
version of OPIUM, called OPIUM lite, which is a fast online 
method for calculating an approximation to the pseudoinverse 
[7]. It is significantly quicker than the full-scale OPIUM, but 
will find slightly sub-optimal output weights. The average 
error achieved on MNIST dataset with OPIUM-lite is 3.78% 
(the standard deviation is 0.096%, Table I). The system that 
used the all-to-all connectivity, the lowest error achieved with 
OPIUM lite is 4.52% [7]. 

V.  CONCLUSIONS 
We have presented an SRAM-based approach to a 

convolutional neural network; an RF-ELM. Our approach is 
highly flexible and uses few hardware resources due to the 
fact that it uses SRAM instead of logic gates. Furthermore, the 
results also show that this approach can yield better 
performance in terms of higher accuracies than the ELM 
networks that uses the all-to-all connectivity. We can now 
envision a large-scale fully reconfigurable neuromorphic 
system, which is capable of performing more complicated 
pattern recognition tasks.  
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TABLE I 

Device utilisation and test error 

Adaptive Logic Modules 
(ALMs) 

RAMs DSPs Test 

Error 

1439/29080 64k/4.5M 0/150 3.78% 
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