
An SRAM-based implementation of a convolutional
neural network

Runchun Wang, Gregory Cohen, Chetan Singh Thakur, Jonathan Tapson, André van Schaik
The MARCS Institute, Western Sydney University, Sydney, NSW, Australia

mark.wang@uws.edu.au

Abstract—In the last decade, computational neuroscience and
machine learning communities have witnessed the emergence of
several algorithms where an input signal is randomly projected
to a higher dimensional space via a nonlinear activation
function. These methods are increasingly popular for regression
or classification tasks, but this kind of neural network has
remained difficult to implement efficiently in hardware. This is
partly due to the all-to-all connectivity required between the
input and hidden layers in these networks. The concept of using
receptive fields (RF) for classification tasks stems from biology,
in which sensory neurons often respond to a limited spatial
range of the input stimulus. Incorporating this methodology into
a classification system often yields an increase in performance.
This paper presents an SRAM-based implementation of the RF
approach to implement this kind of neural network on
hardware. Since SRAM has a much smaller footprint compared
to logic gates, this implementation is much more efficient in
terms of hardware resources. The system was implemented and
verified on an FPGA to demonstrate the efficiencies and
flexibility of this approach for MNIST digit recognition task.

I. BACKGROUND
The Extreme Learning Machine (ELM) is an analytical

technique for solving classification and regression tasks in
which the output layer weights are solved using a single-step
pseudoinverse approach [1]. ELM networks have been used to
solve a wide variety of different problems, ranging from non-
linear predictive motor control [2] and electricity load
prediction [3] to face detection [4]. Additionally, ELM
techniques have been extended to deep learning [5] and
MapReduce implementations [6]. Iterative methods for
calculating the output weights in the ELM networks, such as
the Online Pseudoinverse Update Method (OPIUM) [7],
remove the problem with learning very large datasets, for
which the memory needed to perform the pseudoinverse
operation would otherwise become too large. Furthermore,
these online methods allow the application of ELMs to non-
stationary datasets [7].

Despite their efficiency, ELM networks remain difficult to
implement in hardware due to the all-to-all connectivity

between the input and hidden layer neurons. This requires
significant hardware resources that increase dramatically as
the hidden layer size increases. Hardware solutions generally
assume fixed input layer and hidden layer sizes as well,
greatly reducing the flexibility of these systems and their
applicability to different datasets [8], [9].

 In order to alleviate these problems, a new network
structure based on a receptive field (RF) approach [10][11] is
presented. This network uses a novel encoding SRAM-based
addressing implementation to the RF approach. The results
presented in this paper show that this approach can yield
higher accuracies than the ELM networks that use the all-to-all
connectivity.

This paper begins with a short summary of the RF
approach and the ELM classifier. It then discusses some of the
difficulties encountered when implementing these techniques
in hardware. The hardware-optimised RF approach is then
presented and described; followed by the results section and a
discussion and comparison to existing convolutional neural
networks.

This work has been supported by the Australian Research Council
Grant DP140103001.

Fig. 1. Illustration of the receptive field approach. Each
hidden layer neuron will only receive inputs from only a
small random rectangular receptive field in the original
image plane. The figure was adapted from [11].

978-1-5090-2959-4/16/$31.00 �2016 IEEE 560

II. RECEPTIVE FIELD APPROACH

A. Basic Receptive Field Approach
The concept of using receptive fields ([11]. see Fig. 1) for

classification tasks stems from biology, in which sensory
neurons often respond to a limited spatial range of the input
stimulus. Incorporating this methodology into a classification
system often yields an increase in performance [11] and also
has the added advantage of resulting in a sparse mapping
between layers. When used in an ELM, the RF approach has
shown to produce similar accuracy to conventional ELM
approaches [11], but with an added advantage of easier
implementation in hardware. Furthermore, the locations of the
receptive fields can vary with the dimensions of the input data,
with only the mapping between hidden layer neurons and their
respective receptive fields needing to be changed. This is
particularly beneficial when dealing with hardware
implementations, which often require a fixed number of
neurons in each layer.

The biggest problem with the RF approach is the difficulty
in implementing it directly using hardware, especially when
the position, shape, and size of the RF need to be determined
randomly or via a flexible pattern, requiring random access
across all the dimensions of the input data.

B. Improved RF approach
In order to effectively implement the RF approach in

hardware, the proposed system makes use of a vectorised
version of the input and a set of shift registers. The RF
implementation presented here selects regions in the input
image through sequential indexing from a shift register. This
allows varying receptive fields to be extracted from the input
image by simply changing the starting position within the shift
register. It is important to note that the receptive fields
generated using this approach are not always rectangular, and
it is not possible to generate any arbitrary region using this
approach. Despite these limitations, the system still performs
very well, as demonstrated in the results section.

 Fig. 2 demonstrates how the improved RF approach
operates on the 28x28 pixels, each of which is an 8-bit grey-
scale value, input from the MNIST dataset [12].
Mathematically, the proposed RF approach will first reshape
the input image from 28x28x8bit to 784x8bit and then shift
the RF across this reshaped image with a step size of 16
pixels. Here the region size is set to 128 pixels.

Fig. 2 shows the input shift register on the left and the
resulting receptive field overlaid on the input image on the
right at three different steps. When starting from the first
pixel, the receptive field encompasses the first three rows of
the input image as in Fig. 2a. The selected region will then be
used to generate a stimulus to the first neuron of the hidden
layer by multiplying with input weights, which are randomly
generated for each hidden layer neuron. In the next step, when
the starting index is moved, the receptive field shifts and

selects a different region as shown in Fig. 2b. The selected
region will then be used to generate a stimulus to the second
neuron of the hidden layer by multiplying with its
corresponding input weights.

The procedure will be repeated many times to spread the
input pixels randomly to a higher dimensional space. Fig. 2c
shows the selected region for shifting step 16. After the 49th
step, which is the last step of the reshaped image, the index
will return to the starting point.

III. HARDWARE IMPLEMENTATION

A. Topology
In our previous work [13], we have presented an FPGA

implementation of a massively-parallel pattern recognition
system, which consists of an input layer (the encoder), a
hidden layer with 8192 neurons and an output layer. It consists
of a physical encoder, a physical neuron, a global counter, and
a weight buffer. In that system, the encoder and the hidden
layer are both implemented using a time-multiplexing (TM)
approach [14]–[19], which leverages the high-speed of digital
circuits. The global counter processes the TM encoders and
neurons sequentially. The decoding weights of the physical
neuron are stored in a weight buffer while the input digit
remains static until all the TM neurons finish their processing.
In every clock cycle, the TM encoder will generate the hidden
neuron input from the input digit, and the TM neuron will pass
this signal through a non-linear activation function and
multiply it with the decoding weights for the generation of the
output value. The output neurons then simply sum across all
TM neurons.

Fig. 2. Improved RF approach.

561

In this previous work, the physical encoder was
implemented using an all-to-all connectivity, which consumed
significant amounts of hardware resources. This is indeed one
of the most important motivations for developing an encoder
using the RF approach. Fig. 3 shows the topology of the
encoder, which consists of a pattern FIFO, a shift register
array, a random weight generator, a parallel adder and a global
counter.

B. Pattern FIFO and Shift register array
The pattern FIFO, as shown in Fig. 3, is efficiently

implemented on an SRAM with a size of 512x128bits. Hence
the maximum size of the input pattern is 8192 with 8-bit grey-
scale values. The shift register array consists of eight 128-bit
shift registers, which are all sequentially connected. The input
of the shift register array is connected to the output of the
pattern FIFO and all these eight shift registers are connected to
the parallel adder array.

When an input pattern arrives, it is stored in the pattern
FIFO, which is assumed to be empty. Next, the shift registers
are initialised. This initialisation has eight shifts: the first 128
pixels of the pattern (128x8bits) are moved into the shift
register array by reading the pattern FIFO for eight clock
cycles and shifting the shift registers eight times. As the
pattern FIFO will clear its contents once it has been read out,
the output of the pattern FIFO also needs to be written back
into the pattern FIFO for keeping the pattern during the whole
encoding procedure. Otherwise, the pattern FIFO would be
empty after the 49th shift.

After the eight initial shifts, one each clock cycle, the
global counter will read the pattern FIFO and shift the register
array by one. For instance, if the hidden layer has 8192
neurons, this RF generation operation needs to be performed
for 8192 times. Since it is a pipelined design, the output to the
parallel adder is still being generated every clock cycle (with a
latency of one clock cycle). The pattern FIFO will be flushed
right after the completion of the generation of all the regions.

C. Random weight generator
The random weight generator will generate a uniformly

distributed binary random weight (-1 and 1) for each pixel of
the input digit. These weighted pixels will be summed to
generate the stimulus for each neuron in the hidden layer. The
use of these binary weights saves significant hardware
resources in the FPGA, since otherwise we would need 128
multipliers to compute the multiplication between all pixels
and their corresponding random weights.

For digital implementations, the most efficient way to
generate random numbers is to use linear feedback shift
registers (LFSRs). Hence, we use LFSRs to generate the
binary random weights and the output of the LFSR will be
interpreted following the 2’s compliment rule: 0 for +1 and 1
for -1. Input pixel values (8-bit grey-scale) are simply
concatenated with the binary weights, resulting in weighted
pixel values in 2’s compliment notation (9-bit values).

Since an LFSR will go through all possible values in its
cycle, its output will not be balanced at each shift. In other
words, the number of the 0’s and 1’s are often not the same,
which will affect the performance significantly, because the
weighted pixels will be nearly all negative or positive and the
generated stimulus for hidden neurons will become extremely
large in amplitude. For the generation of balanced binary
random weights, instead of a naïve implementation using one
128-bit LFSR, we use twelve 11-bit LFSRs with different
seeds, each of which generates an 11-bit random number. For
most random seeds, this results in a more evenly distributed
number of 0’s and 1’s.

All these LFSRs will reload their own initial seed on the
arrival of an input pattern. After that, they keep generating
random numbers until a new input pattern arrives. In this way,
we can guarantee that the encoder will generate the exact same
set of random weights for all the incoming patterns. This “on
the fly” generation scheme also reduces the usage of memory
significantly, as there is no requirement for storing the random
weights and only the LFSR seeds need to be stored.

Fig. 3. The structure of the SRAM-based implementation of the improved RF approach.

562

D. Parallel adder array
The parallel adder array sums the 128 weighted pixels for

generating the input to the hidden layer neurons. A naïve
implementation would need a 128-input 9-bit parallel adder
and create a large delay (~20 ns). Instead, we use a 3-stage
pipeline consisting of sixteen 8-input 9-bit adders, four 4-input
12-bit adders, and one 2-input 15-bit adder respectively.
Because of the pipelined design, the input to the hidden layer
is still generated every clock cycle, but with a latency of three
clock cycles. When the system clock runs at a frequency of
250MHz, this pipelined design is four times quicker than the
naïve implementation.

IV. MEASUREMENT RESULTS
To validate the SRAM-based approach, we used it to

implement the encoder in the massively-parallel pattern
recognition system in our previous work [13], while keeping
the remainder of the system remains exactly the same. The
pattern recognition system was implemented on an Altera
Cyclone V FPGA (on a Terasic Cyclone GX starter kit). The
encoder itself uses less than 5% of the hardware resources
(Table I).

We tested the pattern recognition with the MNIST dataset.
10 test runs were conducted, each with a different random
seed. Since the goal of this exercise was to investigate the
performance of the SRAM-based implementation, rather than
to find the best possible performance, we used a simplified
version of OPIUM, called OPIUM lite, which is a fast online
method for calculating an approximation to the pseudoinverse
[7]. It is significantly quicker than the full-scale OPIUM, but
will find slightly sub-optimal output weights. The average
error achieved on MNIST dataset with OPIUM-lite is 3.78%
(the standard deviation is 0.096%, Table I). The system that
used the all-to-all connectivity, the lowest error achieved with
OPIUM lite is 4.52% [7].

V. CONCLUSIONS
We have presented an SRAM-based approach to a

convolutional neural network; an RF-ELM. Our approach is
highly flexible and uses few hardware resources due to the
fact that it uses SRAM instead of logic gates. Furthermore, the
results also show that this approach can yield better
performance in terms of higher accuracies than the ELM
networks that uses the all-to-all connectivity. We can now
envision a large-scale fully reconfigurable neuromorphic
system, which is capable of performing more complicated
pattern recognition tasks.

VI. REFERENCES
[1] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning

machine: Theory and applications,” Neurocomputing, vol. 70, no.
1–3, pp. 489–501, Dec. 2006.

[2] V. M. Janakiraman, X. Nguyen, and D. Assanis, “Nonlinear Model
Predictive Control of A Gasoline HCCI Engine Using Extreme
Learning Machines,” pp. 1–15, 2015.

[3] Ö. F. Ertugrul, “Forecasting electricity load by a novel recurrent
extreme learning machines approach,” Int. J. Electr. Power Energy
Syst., vol. 78, pp. 429–435, Jun. 2016.

[4] A. A. Mohammed, R. Minhas, Q. M. Jonathan Wu, and M. a. Sid-
Ahmed, “Human face recognition based on multidimensional PCA
and extreme learning machine,” Pattern Recognit., vol. 44, no. 10–
11, pp. 2588–2597, 2011.

[5] M. D. Tissera and M. D. McDonnell, “Deep extreme learning
machines: Supervised autoencoding architecture for classification,”
Neurocomputing, vol. 174, pp. 42–49, 2014.

[6] J. Chen, G. Zheng, and H. Chen, “ELM-MapReduce: MapReduce
accelerated extreme learning machine for big spatial data analysis,”
IEEE Int. Conf. Control Autom. ICCA, pp. 400–405, 2013.

[7] A. van Schaik and J. Tapson, “Online and Adaptive Pseudoinverse
Solutions for ELM Weights,” Int. Conf. Extrem. Learn. Mach., vol.
149, pp. 1–9, 2013.

[8] C. S. Thakur, R. Wang, T. J. Hamilton, J. Tapson, and A. van
Schaik, “A Low Power Trainable Neuromorphic Integrated Circuit
That Is Tolerant to Device Mismatch,” IEEE Trans. Circuits Syst. I
Regul. Pap., pp. 1–11, 2016.

[9] C. S. Thakur, T. J. Hamilton, R. Wang, J. Tapson, and A. van
Schaik, “A neuromorphic hardware framework based on
population coding,” in The 2015 International Joint Conference on
Neural Networks (IJCNN), 2015, pp. 1–8.

[10] G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, “Local
Receptive Fields Based Extreme Learning Machine,” IEEE
Comput. Intell. Mag., vol. 10, no. 2, pp. 18–29, May 2015.

[11] M. D. McDonnell, M. D. Tissera, T. Vladusich, A. van Schaik, and
J. Tapson, “Fast, Simple and Accurate Handwritten Digit
Classification by Training Shallow Neural Network Classifiers
with the ‘Extreme Learning Machine’ Algorithm,” PLoS One, vol.
10, no. 8, p. e0134254, Aug. 2015.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, 1998.

[13] R. Wang, C. S. Thakur, T. J. Hamilton, J. Tapson, and A. van
Schaik, “A neuromorphic hardware architecture using the Neural
Engineering Framework for pattern recognition,” pp. 1–12, Jul.
2015.

[14] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A
mixed-signal implementation of a polychronous spiking neural
network with delay adaptation.,” Front. Neurosci., vol. 8, no.
March, p. 51, Jan. 2014.

[15] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A
neuromorphic implementation of multiple spike-timing synaptic
plasticity rules for large-scale neural networks,” Front. Neurosci.,
vol. 9, no. May, pp. 1–17, 2015.

[16] R. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton, J. Tapson, and
A. van Schaik, “An FPGA Implementation of a Polychronous
Spiking Neural Network with Delay Adaptation.,” Front.
Neurosci., vol. 7, no. February, p. 14, Jan. 2013.

[17] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A
compact reconfigurable mixed-signal implementation of synaptic
plasticity in spiking neurons,” in 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), 2014, pp. 862–865.

[18] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “An FPGA
design framework for large-scale spiking neural networks,” in 2014
IEEE International Symposium on Circuits and Systems (ISCAS),
2014, pp. 457–460.

[19] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A
compact neural core for digital implementation of the Neural
Engineering Framework,” in BIOCAS2014, 2014.

TABLE I

Device utilisation and test error

Adaptive Logic Modules
(ALMs)

RAMs DSPs Test

Error

1439/29080 64k/4.5M 0/150 3.78%

563

