
A Stochastic Approach to STDP
Runchun Wang, Chetan Singh Thakur, Tara Julia Hamilton, Jonathan Tapson, André van Schaik

The MARCS Institute, Western Sydney University, Sydney, NSW, Australia
mark.wang@westernsydney.edu.au

Abstract— We present a digital implementation of the Spike
Timing Dependent Plasticity (STDP) learning rule. The
proposed digital implementation consists of an exponential
decay (exp-decay) generator array and a STDP adaptor array.
The weight values are stored in a digital memory, and the STDP
adaptor will send these values to the exp-decay generator using a
digital spike of which the duration is modulated according to
these values. The exp-decay generator will then generate an
exponential decay, which will be used by the STDP adaptor for
performing the weight adaption. The exponential decay, which is
computational expensive, is efficiently implemented by using a
novel stochastic approach. This stochastic approach was fully
analysed and characterised. We use a time multiplexing
approach to achieve 8192 (8k) virtual STDP adaptors and exp-
decay generators with only one physical adaptor and exp-decay
generator respectively. We have validated our stochastic STDP
approach with measurement results of a balanced excitation
experiment. In that experiment, the competition (induced by
STDP) between the synapses can establish a bimodal
distribution of the synaptic weights: either towards zero (weak)
or the maximum (strong) values. Our stochastic approach is
therefore ideal for implementing the STDP learning rule in
large-scale spiking neural networks running in real time.

I. BACKGROUND
The Spike Timing Dependent Plasticity (STDP) algorithm

[1], which has been observed in the mammalian brain,
modulates the weight of a synapse based on the relative timing
of pre-synaptic and post-synaptic spikes. In STDP, the
synaptic weight will be increased (or decreased) if a pre-
synaptic spike arrives several milliseconds before (or after) the
post-synaptic spike fires. This learning rule is computationally
intensive as it requires a lot of exponential and division
functions.

In neuromorphic systems, various implementations of the
STDP algorithm are proposed such as, a circuit based on
analogue blocks and flip-flops [2], a bistable synapse with a
very compact analogue implementation of STDP [3], analogue
blocks and switches to implement exponential STDP [4], and
a digital synapse with an adaptive kernel, binary update rule
and shift-based homeostasis [5]. We have previously
presented a compact implementation of the STDP using linear
decays [6], [7]. Here, we present its follow-up work that uses a
novel stochastic approach that can efficiently implement the

exponential-type STDP, inspired by our recent work on
stochastic electronics as a novel way of building circuits [8].

II. STOCHASTIC DECAY

A. Infinite Impulse Response (IIR) filter approach
 A discrete time first order IIR filter can be expressed by

the following equation:

𝑉 𝑡 + 1 = 𝛼𝑉 𝑡 (1)

where, t represents the index of the time step, and
𝑉 𝑡 represent the previous value of V and the IIR filter
constant 𝛼 is defined as:

𝛼 =
𝜏

𝜏 + 1
 (2)

where, τ is the time constant and the decay d is given by:

𝑑 = 𝑉 𝑡 − 𝑉[𝑡 + 1] =
𝑉[𝑡]
𝜏 + 1

 (3)

When τ is large, 𝛼 is only a little less than 1, and a large
number of bits are needed to encode its value accurately. If the
number of bits used to encode V is equal to, or less than, the
number of bits used to encode 𝛼 , the above recursive
multiplication just results in a near linear decay.

This situation occurs, for example, when simulating a
neural network with many millions of neurons using the time
multiplexing (TM) approach [9–11]. With a standard IIR filter
approach, a large number of bits would be needed for each
state variable to calculate long time constants. In addition,
large memory storage per state variable will result in a
communication bottleneck, since only a few bits can be
exchanged with the memory in a single clock cycle.

B. Stochastic approach
We have used a stochastic approach to implement long

time constants in hardware using fewer numbers of bits for the
state variables in our previous work [12]. The work reported
here was based on that work. In this implementation, we first
multiply V by the IIR factor 𝛼 and then add a random number
r to the multiplication result. Mathematically, the method can
be written as:

𝑉 𝑡 + 1 = 𝑖𝑛𝑡(
𝜏

𝜏 + 1
𝑉 𝑡 + 𝑟 𝑡) (4) This work has been supported by the Australian Research Council

Grant DP140103001. This work was inspired by the Capo Caccia
Cognitive Neuromorphic Engineering Workshop 2014 and Telluride
Neuromorphic workshop 2015.

978-1-4799-5341-7/16/$31.00 ©2016 IEEE

2082

where, r[t] is a random number drawn from a uniform
distribution in the range (0,1). This is effectively a form of
dithering to deal with the rounding of V, which is a 4-bit
number, to an integer value. The probability of decaying p is
then given by:

𝑝 = 𝑟 <
𝑉

𝜏 + 1
=

𝑉
𝜏 + 1

 (5)

The decay is then given by:

𝑑 = 𝑉 𝑡 − 𝑉 𝑡 + 1 (6)

 = 𝑖𝑛𝑡(
𝑉 𝑡
𝜏 + 1

− 𝑟 𝑡) (7)

 = 𝑖𝑛𝑡
𝑉

𝜏 + 1
+ 𝑋 (8)

𝑃 𝑋 = 1 =
𝑉 𝑡
𝜏 + 1

%1 (9)

where, 𝑥%1 is 𝑥 modulo 1 and 𝑖𝑛𝑡 (𝑉/(𝜏 + 1)) is the integer
part of 𝑉/(𝜏 + 1). This shows immediate parallels with the
original IIR filter and our stochastic approach is capable of
producing the same exponential decay. We only store few
MSBs of the final product, e.g., V is stored as a 4-bit integer.

C. Characterisation of variances
This stochastic approach not only reduces the storage

needed, but also introduces variability between the STDP
synapses while using the exact same synapse model. This
makes the networks more realistic simulations of biological
neural networks. The variance for a single decay is given by:

𝑉𝑎𝑟 𝑛 =
1 − 𝑝
𝑝!

=
(𝜏 + 1)!

𝑉!
−
𝜏 + 1
𝑉

 (10)

Since each duration until a decrement is an independent
random variable, the variance for the half-time h is given by
the sum of the variances for each decrement:

𝑉𝑎𝑟 ℎ =
(𝜏 + 1)!

(𝑉 + 1 − 𝑖)!
−

𝜏 + 1
𝑉 + 1 − 𝑖

!/!

!!!

 (11)

 =
(𝜏 + 1)!

(𝑉/2 + 𝑖)!
−

𝜏 + 1
𝑉/2 + 𝑖

!/!

!!!

!/!

!!!

 (12)

In this equation, the sum converges to ln(2) as V/2 → ∞, so
that we can write:

𝑉𝑎𝑟 ℎ ≈
(𝜏 + 1)!

𝑉 + 1
− (𝜏 + 1)𝑙𝑛 (2) (13)

The variances of the half-time h will be very large when 𝜏
is large. Mathematically, the larger range r is in, the bigger the
variances for the half-time h will be. In the above analysis, r is
from a uniform distribution in the range (0,1). Reducing the
variances for the half-time h can be effectively achieved by
limiting r in a smaller range as long as the following condition
is met:

𝛼𝑉 +𝑚𝑖𝑛 (𝑟) < 𝑉 (14)

Otherwise V will not decay. It is obvious that the most
critical condition is when V is 1. Since for digital
implementations, the most efficient way to generate random
numbers is to use linear feedback shift registers (LFSRs), this
condition can be expressed as:

𝜏
𝜏 + 1

+min (𝑟) =
𝜏

𝜏 + 1
+
1
2!
< 1 (15)

𝜏 < 2! − 1 (16)

Fig. 1. Exponential decay obtained by using the
stochastic approach. The dashed line is the IIR decay
trace with a time constant 𝜏 of 30 ms (𝛼 = 495/512, a 9-bit
number). V is stored as a 4-bit integer with an initial value
of 15. (a-b) One exponential decay and all the exponential
decays achieved by a 5-bit LFSR respectively; and (c)
Exponential decays achieved by a 9-bit LFSR, using 1023
different random seeds. It is clear that the variances of the
exponential decays achieved by the 9-bit LFSR are much
larger that the ones of the decays achieved by the 5-bit
LFSR.

2083

where, L is the length of the LFSR. For example, the
maximum time constant that a 5-bit LFSR can achieve is 30
ms (the time step is 1 ms). Using a 9-bit LFSR for the same
time constant will create much larger variances (see Fig. 1).
Hence the principle to reduce to the variances of the half-time
h is to use the LFSR with the minimum length that can still
achieve the time constant.

III. HARDWAR E IMPLEMENTATION

A. Learning rule
In our hardware implementation, the amount of synaptic

modification is summarised by the following equations:

𝛥𝑤 = 𝐴!𝑒𝑥𝑝(𝛥𝑡/𝜏!), 𝑖𝑓 𝛥𝑡 < 0
−𝐴!𝑒𝑥𝑝(𝛥𝑡/𝜏!), 𝑖𝑓 𝛥𝑡 ≥ 0 (20)

where, 𝛥w is the modification of the synaptic weight, 𝛥t is the
arrival time difference between the pre- and post-synaptic
spike. A+ and A- determine the maximum amounts of synaptic
modification for each spike pair. The 𝜏 + and 𝜏 - are time
constants and control the rate of decay for potentiation and
depression portions of the curve. As we focus on the low-cost
hardware implementation of the exponential-type STDP,
quantifying the effects of our learning rules on the synaptic
weight are out of the scope of this paper. In the work reported
here, we use 𝜏 += 𝜏 -

 = 20 ms and A+=A- =1 throughout.
Hence, the 𝛥w is indeed the V[t] in equation (4).

B. Topology
In our previous work [6, 7], we implemented a synaptic

plasticity adaptor array that is separate from the neurons in the
neural network. Each adaptor (in that array) performs synaptic
plasticity, i.e., STDP, according to the arrival times of the pre-
and post-synaptic spikes assigned to it. And it sends out the
updated result, i.e., synaptic weight, to the post-synaptic
neuron in the neural network. Since this strategy provides
great flexibility for building complex large-scale neural
networks, we chose to use exact the same architecture as in [6]
to implement an exponential-type STDP adaptor array (see
Fig. 2). It consists of a controller, a Master RAM, a TM STDP
adaptor array and a TM exp-decay generator array, all of
which, with the exception of the last one, are identical to ones

presented in [6]. The TM adaptor array and the TM exp-decay
generator array are both configured to have 8192 (8k) units,
each TM exp-decay generator being assigned to one TM
STDP adaptor. The TM time window generator array in [6],
which generates linear decay, is replaced by the exp-decay
generator array.

The exponential-type STDP adaptor array operates in the
exact same manner as the digital synaptic adaptor array in [6].
The controller receives pre- and post-synaptic spikes from the
neuron array and assigns them to the corresponding TM STDP
adaptors according to their addresses. The weight values are
stored in the local cache and the Master RAM. The TM STDP
adaptors will send these values to the TM exp-decay generator
array using a digital spike of which the duration is modulated
according to these values.

Each TM exp-decay generator will start an exponential
decay when either a pre- or post-synaptic spike arrives, which
will be used by the corresponding TM STDP adaptor to
determine the weight update. As we assume that the adaption
will not be carried out if the pre- and post- synaptic spikes
arrive simultaneously, thus only one TM exp-decay generator
will be needed. The STDP adaptor will carry out the weight
adaption using its output V[t]. The stored weight values will
also be sent out to the corresponding neuron in the neural
network for the post-synaptic current generation.

C. TM exp-decay generator array
The TM exp-decay generator array was implemented using

the TM approach [9–11] to achieve 8k TM exp-decay
generators with only one physical exp-decay generator. The
global counter processes each TM exp-decay generator
sequentially. Each TM exp-decay generator uses a time slot of
25 clock cycles (125 ns with 200 MHz clock frequency) to
complete its processing to maintain an update rate of 1 kHz
(the corresponding time step is about 125 ns×8k=1 ms).

In each time slot, the global counter will read the value of
the V[t] (a 4-bit integer) from the Decay RAM with a size of
8k×4bit. V[t] will be reset to Vinit (set to 15 here), when the
digital input spike (Decay_start) from the TM adaptor is
active (high). When there is no input spike, we will apply the
stochastic approach (see equation (4)) to V[t] on each time slot
(of that TM exp-decay generator), until it reaches zero,
indicating the end of the exponential decay.

These computations was implemented with a single fixed-
point number multiplier. Its inputs are 𝛼 (a 9-bit integer) and
V[t] (4-bit) and its output result is 13-bit wide. For future
extension capability, we used a multiplexer to choose 𝛼 for
different time constants. For the same reason, we used a 7-bit
LFSR to generate r. The LFSR is configured to use its five
least significant bits (LSBs) in the work reported here (𝜏+= 𝜏-

= 20 ms) and it will generate a new value every 1 ms. The
product V[t+1] will then be stored into the exp-decay RAM.

Fig. 2. The structure of the STDP adaptor array.

2084

IV. MEASUREMENT RESULTS
 We have successfully implemented the exponential-type

STDP adaptor array on an Altera Cyclone V FPGA. Table I
shows the utilisation (without the Master RAM) of hardware
resources on the FPGA. As Table I shows, the proposed
system uses only a small fraction (<1%) of the hardware
resources.

We have tested the performance of the exponential-type
STDP adaptor array by performing a balanced excitation
experiment, based on the experiment run by [13]. Song et al.
(2000) have shown that competitive Hebbian learning [14] can
be performed through STDP. The competition (induced by
STDP) between the synapses can establish a bimodal
distribution of the synaptic weights: either towards zero
(weak) or the maximum (strong) values (see Fig. 3).

V. CONCLUSIONS
 In this paper, we demonstrated a digital implementation of

the STDP learning rule using a novel stochastic approach.
This approach is capable of producing the same results to a
more complex STDP model while occupying only a fraction
of the area. The compactness plus the variability presents a
perfect solution for implementing synaptic learning in large-
scale digital neural networks.

VI. REFERENCES
[1] W. Gerstner, R. Kempter, J. L. van Hemmen, and H.

Wagner, “A neuronal learning rule for sub-millisecond
temporal coding,” Nature, vol. 383, no. 6595, pp. 76–81,
Sep. 1996.

[2] A. Bofill-i-petit and A. F. Murray, “Synchrony detection
and amplification by silicon neurons with STDP
synapses,” IEEE Transactions on Neural Networks, vol.
15, no. 5, pp. 1296–304, Sep. 2004.

[3] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI Array
of Low-Power Spiking Neurons and Bistable Synapses
With Spike-Timing Dependent Plasticity,” IEEE
Transactions on Neural Networks, vol. 17, no. 1, pp.
211–221, Jan. 2006.

[4] T. J. Koickal, A. Hamilton, S. L. Tan, J. A. Covington, J.
W. Gardner, and T. C. Pearce, “Analog VLSI Circuit
Implementation of an Adaptive Neuromorphic Olfaction
Chip,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 54, no. 1, pp. 60–73, Jan. 2007.

[5] S. Afshar, L. George, C. S. Thakur, J. Tapson, A. van
Schaik, P. de Chazal, and T. J. Hamilton, “Turn Down
That Noise: Synaptic Encoding of Afferent SNR in a
Single Spiking Neuron,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 9, no. 2, pp. 188–
96, 2015.

[6] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van
Schaik, “A compact reconfigurable mixed-signal
implementation of synaptic plasticity in spiking
neurons,” in IEEE International Symposium on Circuits
and Systems, 2014, pp. 862–865.

[7] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van
Schaik, “A neuromorphic implementation of multiple
spike-timing synaptic plasticity rules for large-scale
neural networks,” Frontiers in Neuroscience, 2015.

[8] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson,
“Stochastic Electronics : a neuro-inspired design
paradigm for integrated circuits,” Proceedings of the
IEEE, vol. 102, no. 5, pp. 843–859, May 2014.

[9] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van
Schaik, “A mixed-signal implementation of a
polychronous spiking neural network with delay
adaptation,” Frontiers in Neuroscience, vol. 8, no.
March, pp. 1–16, Mar. 2014.

[10] R. M. Wang, G. K. Cohen, K. M. Stiefel, T. J. Hamilton,
J. Tapson, and A. van Schaik, “An FPGA
Implementation of a Polychronous Spiking Neural
Network with Delay Adaptation,” Frontiers in
Neuroscience, vol. 7, no. February, pp. 1–14, 2013.

[11] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van
Schaik, “A compact neural core for digital
implementation of the Neural Engineering Framework,”
in BIOCAS2014, 2014, pp. 548–551.

[12] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van
Schaik, “An FPGA design framework for large-scale
spiking neural networks,” IEEE International
Symposium on Circuits and Systems, 2014, pp. 457–460.

[13] L. F. Abbott, S. Song, and K. D. Miller, “Competitive
Hebbian learning through spike-timing-dependent
synaptic plasticity,” Nature Neuroscience, vol. 3, no. 9,
pp. 919–926, Sep. 2000.

[14] D. O. Hebb, The organization of behavior. New York,
NY: Wiley & Sons, 1949.

Fig. 3. Balanced excitation experiment. (a) Weight
distribution after 1.25s of STDP for an input rate of 10 Hz.
The bimodal distribution of strong and weak weights is
apparent.

TABLE I

Device utilisation Altera Cyclone 5CGXFC5C6F27C7

Layers ALMs RAMs DSPs

1 246/29080 192k/4.5M	 1/450

2085

