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Abstract— We present a digital implementation of the Spike 
Timing Dependent Plasticity (STDP) learning rule. The 
proposed digital implementation consists of an exponential 
decay (exp-decay) generator array and a STDP adaptor array. 
The weight values are stored in a digital memory, and the STDP 
adaptor will send these values to the exp-decay generator using a 
digital spike of which the duration is modulated according to 
these values. The exp-decay generator will then generate an 
exponential decay, which will be used by the STDP adaptor for 
performing the weight adaption. The exponential decay, which is 
computational expensive, is efficiently implemented by using a 
novel stochastic approach. This stochastic approach was fully 
analysed and characterised. We use a time multiplexing 
approach to achieve 8192 (8k) virtual STDP adaptors and exp-
decay generators with only one physical adaptor and exp-decay 
generator respectively.  We have validated our stochastic STDP 
approach with measurement results of a balanced excitation 
experiment. In that experiment, the competition (induced by 
STDP) between the synapses can establish a bimodal 
distribution of the synaptic weights: either towards zero (weak) 
or the maximum (strong) values. Our stochastic approach is 
therefore ideal for implementing the STDP learning rule in 
large-scale spiking neural networks running in real time. 

I. BACKGROUND 
The Spike Timing Dependent Plasticity (STDP) algorithm 

[1], which has been observed in the mammalian brain, 
modulates the weight of a synapse based on the relative timing 
of pre-synaptic and post-synaptic spikes. In STDP, the 
synaptic weight will be increased (or decreased) if a pre-
synaptic spike arrives several milliseconds before (or after) the 
post-synaptic spike fires. This learning rule is computationally 
intensive as it requires a lot of exponential and division 
functions. 

In neuromorphic systems, various implementations of the 
STDP algorithm are proposed such as, a circuit based on 
analogue blocks and flip-flops [2], a bistable synapse with a 
very compact analogue implementation of STDP [3], analogue 
blocks and switches to implement exponential STDP [4], and 
a digital synapse with an adaptive kernel, binary update rule 
and shift-based homeostasis [5]. We have previously 
presented a compact implementation of the STDP using linear 
decays [6], [7]. Here, we present its follow-up work that uses a 
novel stochastic approach that can efficiently implement the 

exponential-type STDP, inspired by our recent work on 
stochastic electronics as a novel way of building circuits [8]. 

II.  STOCHASTIC DECAY 

A. Infinite Impulse Response (IIR) filter approach  
 A discrete time first order IIR filter can be expressed by 

the following equation:  

𝑉 𝑡 + 1 = 𝛼𝑉 𝑡  (1) 

where, t represents the index of the time step, and  
𝑉 𝑡  represent the previous value of V and the IIR filter 
constant 𝛼 is defined as: 

𝛼 =
𝜏

𝜏 + 1
 (2) 

where, τ is the time constant and the decay d is given by: 

𝑑 = 𝑉 𝑡 − 𝑉[𝑡 + 1] =
𝑉[𝑡]
𝜏 + 1

 (3) 

When τ is large, 𝛼 is only a little less than 1, and a large 
number of bits are needed to encode its value accurately. If the 
number of bits used to encode V is equal to, or less than, the 
number of bits used to encode 𝛼 , the above recursive 
multiplication just results in a near linear decay.  

This situation occurs, for example, when simulating a 
neural network with many millions of neurons using the time 
multiplexing (TM) approach [9–11]. With a standard IIR filter 
approach, a large number of bits would be needed for each 
state variable to calculate long time constants. In addition, 
large memory storage per state variable will result in a 
communication bottleneck, since only a few bits can be 
exchanged with the memory in a single clock cycle. 

B. Stochastic approach  
We have used a stochastic approach to implement long 

time constants in hardware using fewer numbers of bits for the 
state variables in our previous work [12]. The work reported 
here was based on that work. In this implementation, we first 
multiply V by the IIR factor 𝛼 and then add a random number 
r to the multiplication result. Mathematically, the method can 
be written as: 

𝑉 𝑡 + 1 = 𝑖𝑛𝑡(
𝜏

𝜏 + 1
𝑉 𝑡 + 𝑟 𝑡 ) (4) This work has been supported by the Australian Research Council 

Grant DP140103001. This work was inspired by the Capo Caccia 
Cognitive Neuromorphic Engineering Workshop 2014 and Telluride 
Neuromorphic workshop 2015. 
 

978-1-4799-5341-7/16/$31.00 ©2016 IEEE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2082 

  



where, r[t] is a random number drawn from a uniform 
distribution in the range (0,1). This is effectively a form of 
dithering to deal with the rounding of V, which is a 4-bit 
number, to an integer value. The probability of decaying p is 
then given by: 

𝑝 = 𝑟 <
𝑉

𝜏 + 1
=

𝑉
𝜏 + 1

 (5) 

The decay is then given by: 

𝑑 = 𝑉 𝑡 − 𝑉 𝑡 + 1  (6) 

    = 𝑖𝑛𝑡(
𝑉 𝑡
𝜏 + 1

− 𝑟 𝑡 ) (7) 

    = 𝑖𝑛𝑡
𝑉

𝜏 + 1
+ 𝑋 (8) 

𝑃 𝑋 = 1 =
𝑉 𝑡
𝜏 + 1

%1 (9) 

where, 𝑥%1 is 𝑥 modulo 1 and 𝑖𝑛𝑡 (𝑉/(𝜏 + 1)) is the integer 
part of 𝑉/(𝜏 + 1). This shows immediate parallels with the 
original IIR filter and our stochastic approach is capable of 
producing the same exponential decay. We only store few 
MSBs of the final product, e.g., V is stored as a 4-bit integer. 

C. Characterisation of variances 
This stochastic approach not only reduces the storage 

needed, but also introduces variability between the STDP 
synapses while using the exact same synapse model. This 
makes the networks more realistic simulations of biological 
neural networks. The variance for a single decay is given by: 

𝑉𝑎𝑟 𝑛 =
1 − 𝑝
𝑝!

=
(𝜏 + 1)!

𝑉!
−
𝜏 + 1
𝑉

 (10) 

Since each duration until a decrement is an independent 
random variable, the variance for the half-time h is given by 
the sum of the variances for each decrement: 

𝑉𝑎𝑟 ℎ =
(𝜏 + 1)!

(𝑉 + 1 − 𝑖)!
−

𝜏 + 1
𝑉 + 1 − 𝑖

!/!

!!!

 (11) 

               =
(𝜏 + 1)!

(𝑉/2 + 𝑖)!
−

𝜏 + 1
𝑉/2 + 𝑖

!/!

!!!

!/!

!!!

 (12) 

In this equation, the sum converges to ln(2) as V/2 → ∞, so 
that we can write: 

𝑉𝑎𝑟 ℎ ≈
(𝜏 + 1)!

𝑉 + 1
− (𝜏 + 1)𝑙𝑛 (2) (13) 

The variances of the half-time h will be very large when 𝜏 
is large. Mathematically, the larger range r is in, the bigger the 
variances for the half-time h will be. In the above analysis, r is 
from a uniform distribution in the range (0,1). Reducing the 
variances for the half-time h can be effectively achieved by 
limiting r in a smaller range as long as the following condition 
is met:    

𝛼𝑉 +𝑚𝑖𝑛 (𝑟) < 𝑉 (14) 

Otherwise V will not decay. It is obvious that the most 
critical condition is when V is 1. Since for digital 
implementations, the most efficient way to generate random 
numbers is to use linear feedback shift registers (LFSRs), this 
condition can be expressed as: 

𝜏
𝜏 + 1

+min (𝑟) =
𝜏

𝜏 + 1
+
1
2!
< 1 (15) 

𝜏 < 2! − 1 (16) 

 
Fig. 1. Exponential decay obtained by using the 
stochastic approach. The dashed line is the IIR decay 
trace with a time constant 𝜏 of 30 ms (𝛼 = 495/512, a 9-bit 
number). V is stored as a 4-bit integer with an initial value 
of 15. (a-b) One exponential decay and all the exponential 
decays achieved by a 5-bit LFSR respectively; and (c) 
Exponential decays achieved by a 9-bit LFSR, using 1023 
different random seeds. It is clear that the variances of the 
exponential decays achieved by the 9-bit LFSR are much 
larger that the ones of the decays achieved by the 5-bit 
LFSR.  
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where, L is the length of the LFSR. For example, the 
maximum time constant that a 5-bit LFSR can achieve is 30 
ms (the time step is 1 ms). Using a 9-bit LFSR for the same 
time constant will create much larger variances (see Fig. 1). 
Hence the principle to reduce to the variances of the half-time 
h is to use the LFSR with the minimum length that can still 
achieve the time constant.  

III. HARDWAR E IMPLEMENTATION 

A. Learning rule  
In our hardware implementation, the amount of synaptic 

modification is summarised by the following equations: 

𝛥𝑤 = 𝐴!𝑒𝑥𝑝(𝛥𝑡/𝜏!),  𝑖𝑓 𝛥𝑡 < 0
−𝐴!𝑒𝑥𝑝(𝛥𝑡/𝜏!), 𝑖𝑓 𝛥𝑡 ≥ 0 (20) 

where, 𝛥w is the modification of the synaptic weight, 𝛥t is the 
arrival time difference between the pre- and post-synaptic 
spike. A+ and A- determine the maximum amounts of synaptic 
modification for each spike pair. The 𝜏 + and 𝜏 - are time 
constants and control the rate of decay for potentiation and 
depression portions of the curve. As we focus on the low-cost 
hardware implementation of the exponential-type STDP, 
quantifying the effects of our learning rules on the synaptic 
weight are out of the scope of this paper. In the work reported 
here, we use 𝜏 += 𝜏 -

 =  20 ms and A+=A- =1 throughout. 
Hence, the 𝛥w is indeed the V[t] in equation (4).  

B. Topology 
In our previous work [6, 7], we implemented a synaptic 

plasticity adaptor array that is separate from the neurons in the 
neural network. Each adaptor (in that array) performs synaptic 
plasticity, i.e., STDP, according to the arrival times of the pre- 
and post-synaptic spikes assigned to it. And it sends out the 
updated result, i.e., synaptic weight, to the post-synaptic 
neuron in the neural network. Since this strategy provides 
great flexibility for building complex large-scale neural 
networks, we chose to use exact the same architecture as in [6] 
to implement an exponential-type STDP adaptor array (see 
Fig. 2). It consists of a controller, a Master RAM, a TM STDP 
adaptor array and a TM exp-decay generator array, all of 
which, with the exception of the last one, are identical to ones 

presented in [6]. The TM adaptor array and the TM exp-decay 
generator array are both configured to have 8192 (8k) units, 
each TM exp-decay generator being assigned to one TM 
STDP adaptor. The TM time window generator array in [6], 
which generates linear decay, is replaced by the exp-decay 
generator array. 

The exponential-type STDP adaptor array operates in the 
exact same manner as the digital synaptic adaptor array in [6]. 
The controller receives pre- and post-synaptic spikes from the 
neuron array and assigns them to the corresponding TM STDP 
adaptors according to their addresses. The weight values are 
stored in the local cache and the Master RAM. The TM STDP 
adaptors will send these values to the TM exp-decay generator 
array using a digital spike of which the duration is modulated 
according to these values.  

Each TM exp-decay generator will start an exponential 
decay when either a pre- or post-synaptic spike arrives, which 
will be used by the corresponding TM STDP adaptor to 
determine the weight update. As we assume that the adaption 
will not be carried out if the pre- and post- synaptic spikes 
arrive simultaneously, thus only one TM exp-decay generator 
will be needed. The STDP adaptor will carry out the weight 
adaption using its output V[t]. The stored weight values will 
also be sent out to the corresponding neuron in the neural 
network for the post-synaptic current generation.  

C. TM exp-decay generator array  
The TM exp-decay generator array was implemented using 

the TM approach [9–11] to achieve 8k TM exp-decay 
generators with only one physical exp-decay generator. The 
global counter processes each TM exp-decay generator 
sequentially. Each TM exp-decay generator uses a time slot of 
25 clock cycles (125 ns with 200 MHz clock frequency) to 
complete its processing to maintain an update rate of 1 kHz 
(the corresponding time step is about 125 ns×8k=1 ms).  

In each time slot, the global counter will read the value of 
the V[t] (a 4-bit integer) from the Decay RAM with a size of 
8k×4bit. V[t] will be reset to Vinit (set to 15 here), when the 
digital input spike (Decay_start) from the TM adaptor is 
active (high). When there is no input spike, we will apply the 
stochastic approach (see equation (4)) to V[t] on each time slot 
(of that TM exp-decay generator), until it reaches zero, 
indicating the end of the exponential decay.  

These computations was implemented with a single fixed-
point number multiplier. Its inputs are 𝛼 (a 9-bit integer) and 
V[t] (4-bit) and its output result is 13-bit wide. For future 
extension capability, we used a multiplexer to choose 𝛼 for 
different time constants. For the same reason, we used a 7-bit 
LFSR to generate r. The LFSR is configured to use its five 
least significant bits (LSBs) in the work reported here (𝜏+= 𝜏-

 

= 20 ms) and it will generate a new value every 1 ms. The 
product V[t+1] will then be stored into the exp-decay RAM.  

 
Fig. 2. The structure of the STDP adaptor array.  
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IV. MEASUREMENT RESULTS 
 We have successfully implemented the exponential-type 

STDP adaptor array on an Altera Cyclone V FPGA. Table I 
shows the utilisation (without the Master RAM) of hardware 
resources on the FPGA. As Table I shows, the proposed 
system uses only a small fraction (<1%) of the hardware 
resources. 

We have tested the performance of the exponential-type 
STDP adaptor array by performing a balanced excitation 
experiment, based on the experiment run by [13]. Song et al. 
(2000) have shown that competitive Hebbian learning [14] can 
be performed through STDP. The competition (induced by 
STDP) between the synapses can establish a bimodal 
distribution of the synaptic weights: either towards zero 
(weak) or the maximum (strong) values (see Fig. 3).  

V.  CONCLUSIONS 
 In this paper, we demonstrated a digital implementation of 

the STDP learning rule using a novel stochastic approach. 
This approach is capable of producing the same results to a 
more complex STDP model while occupying only a fraction 
of the area. The compactness plus the variability presents a 
perfect solution for implementing synaptic learning in large-
scale digital neural networks. 
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Fig. 3. Balanced excitation experiment. (a) Weight 
distribution after 1.25s of STDP for an input rate of 10 Hz. 
The bimodal distribution of strong and weak weights is 
apparent. 

TABLE I 

Device utilisation Altera Cyclone 5CGXFC5C6F27C7 

Layers ALMs RAMs DSPs 

1 246/29080 192k/4.5M	 1/450 
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