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Abstract—Random device mismatch that arises as a result
of scaling of the CMOS (complementary metal-oxide semi-
conductor) technology into the deep submicrometer regime de-
grades the accuracy of analog circuits. Methods to combat this
increase the complexity of design. We have developed a novel
neuromorphic system called a trainable analog block (TAB), which
exploits device mismatch as a means for random projections of
the input to a higher dimensional space. The TAB framework is
inspired by the principles of neural population coding operating
in the biological nervous system. Three neuronal layers, namely
input, hidden, and output, constitute the TAB framework, with
the number of hidden layer neurons far exceeding the input layer
neurons. Here, we present measurement results of the first proto-
type TAB chip built using a 65 nm process technology and show
its learning capability for various regression tasks. Our TAB chip
is tolerant to inherent randomness and variability arising due to
the fabrication process. Additionally, we characterize each neuron
and discuss the statistical variability of its tuning curve that arises
due to random device mismatch, a desirable property for the
learning capability of the TAB. We also discuss the effect of the
number of hidden neurons and the resolution of output weights on
the accuracy of the learning capability of the TAB. We show that
the TAB is a low power system—the power dissipation in the TAB
with 456 neuron blocks is 1.38 μW.

Index Terms—Analog integrated circuit design, neural network
hardware, neuromorphic engineering, stochastic electronics.

I. INTRODUCTION

OVER time, electronic devices have witnessed a higher
packing density of transistors in accordance with Moore’s

law [1]. Owing to this, computing devices have become smarter,
faster, and more efficient. The increase in the number of
transistors has been made possible due to a decrease in the
minimum feature size, which has already reduced below 22 nm.
However, keeping up with Moore’s law has not been easy. In
submicrometer technologies, factors such as minor variations
of process, external unknown fields, minor layout changes,
and leakage currents have large effects on the performance
of analog circuits, making them difficult to design and, thus,
creating significant challenges. These effects may be minimized
by increasing device size; however, this increases the size of an
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integrated circuit (IC) and as a result increases its cost [2], [3].
Further, the failure of a few transistors may result in the failure
of the entire chip, rendering it unusable. Thus, there is a trade-
off between performance yield and costs in the submicrometer
technology.

The brain is an incredible computational device that sur-
passes today’s modern computers in various tasks such as
vision and audition. Similar to the problems of transistor failure
and device mismatch in an IC, the brain is faced with the
problems of heterogeneity of neuronal responses to stimuli and
neuronal cell death. The biological nervous system has been
able to resolve these problems over the course of evolution, and
provides an excellent model for IC implementation. Neuromor-
phic systems, inspired by neurobiological processing systems,
offer an attractive alternative to conventional analog IC design
technology in terms of power efficiency and computation using
stochastic components [4]–[6].

In many regions of the brain, information is encoded by pat-
terns of activity occurring over populations of neurons, a
phenomenon referred to as population coding [7]. We have
developed a novel neuromorphic system called a trainable
analog block (TAB) that works in a similar manner by using
a large pool of neurons for encoding the input, and linearly
combining the neuronal responses to achieve decoding. The
TAB chip architecture explicitly uses random device mismatch
to its advantage, and is thus ideally suited for submicrometer
technologies. The TAB attempts to incorporate the features of
neurobiological systems, such as low power consumption, fault
tolerance, and adaptive learning. Owing to adaptive learning,
the designs will be portable across technologies and appli-
cations, eliminating the need for custom IC design for those
functions that can be implemented with our TAB. We envisage
that the TAB will contribute to a considerable speed-up in IC
design by shortening the design cycle for analog circuits, and
result in a drastic decrease in design costs. The TAB framework
may be used to design systems that will employ hardware
variability to achieve their engineering goal, thus qualifying
as a design circuit paradigm for stochastic electronics [8]. The
TAB circuits are effectively universal function approximators
[9], thereby allowing for complex processing on a simple and
repeatable substrate.

Other research groups have proposed systems that exploit
device mismatch for computation in silicon [10]–[12]. Many
recent papers [13]–[15] have used architectures similar to our
design, inspired either by the neural engineering framework
(NEF) [16] or the extreme learning machine (ELM) [17],
and implemented using spiking neurons to process the spike
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inputs. Chen et al. [13] have developed a machine learning
co-processor (MLCP) that performs spike-based computation
using ELM. The MLCP encodes the ELM algorithm for spike
inputs in many stages, and the decoding is done separately on a
microcontroller (MCU). The MLCP takes the spike inputs and
then converts them into the analog domain using a counter and
a DAC circuit. The output of the DAC is then sent as a current
input to the analog neurons, which convert it back into spikes,
and the resultant spikes are then counted using a digital counter
with some extra logic blocks to implement a saturating nonlin-
earity (such as sigmoid). The output of the counter is then sent
to an MCU for decoding of the ELM algorithm. In an ELM ar-
chitecture, the number of hidden layer neurons is quite large—
at least ten times of the input dimensions, to achieve good
accuracy [17], [18]. However, the MLCP supports 128 inputs
with only 128 hidden nodes. This system will thus have a low
encoding capacity due to a low number of hidden nodes for such
a high number of input dimensions.

Our TAB system is designed to be tolerant to device mis-
match to create an analog signal processor, which does not
use spikes. We have simply used a differential pair to generate
the saturating nonlinearity. Our system does not require any
extra circuits such as a digital counter, spiking neurons, or
an input pre-processing unit for encoding of the input, unlike
in the case of the MLCP [13]. The TAB also performs the
decoding of the ELM framework on to the same chip—it does
not require a separate MCU or an FPGA for the decoding logic.
The encoding per neuron of a single input requires a very small
area (3.5 μm × 3.5 μm).

This paper is organized as follows: Section II explains the
framework of the TAB. VLSI (very large scale integration)
implementation of the TAB is described in Section III. The
algorithm setup for offline learning in Section IV and the con-
strained algorithm in Section V. We present the measurements
of the building blocks of our TAB implementation in Section VI
and conclusions in Section VII.

II. FRAMEWORK OF TAB

The TAB framework draws inspiration from the phenomenon
of neural population coding [19]. In population coding, biolog-
ical neurons in several parts of the brain encode information
in a collective and distributed manner using spike rates. The
accuracy of information processing in the cortex depends on
the quality of population coding, which in turn is affected by the
heterogeneity of neuronal responses and the shape of neuronal
tuning curves [21], [22]. The tuning curve of a neuron is a plot
of its average firing rate as a function of the input stimulus. As
examples of population coding, neurons in monkeys, cricket,
barn owl, cats, bats, and rats encode the direction of arm
movements [23], the direction of a wind stimulus [24], the
direction of a sound stimulus [25], saccade direction [26], echo
delay [27], and the position of the rat in its environment [28],
respectively. The TAB framework is designed to use neuronal
tuning curves instead of individual spikes. Further, we have
used a heterogeneous population of neurons in the TAB ar-
chitecture. Heterogeneity of the tuning curves of the neurons
increase the encoding capacity of the network [29].

Fig. 1. Architecture of the TAB framework. The connections from the input
layer neurons/nodes to the non-linear hidden neurons are via random weights
and controllable offsets, O1 to OM . The hidden layer neurons are connected
linearly to the outer layer neurons via trainable weights. The output neurons
compute a linearly weighted sum of the hidden layer values. Adapted from [29].

In order to decode the response of a neuronal population, it is
required to combine the firing rates of neurons into a population
ensemble estimate. Generally, the tuning curve of each neuron
contributes a basis function and the best estimate of the physical
variables is computed from the sum of these functions weighted
by the spike rate occurring in each neuron [30]. In our TAB
system, we have used a similar approach to decode the stimulus.

Accurate encoding of an input occurs when a population of
neurons covers the entire range of the input variable. This is
best achieved if the neuronal tuning curves are equally spaced
[31], and may be imposed in a neural system by encoding the
defined physiological properties of neurons in each population.
However, the resulting costs to the system are unreasonably
high. Instead, randomly chosen parameters from the distribu-
tion are likely to perform an equally good approximation [31].
Recently, Caron et al. showed the existence of such randomness
in the olfactory system, where inputs from the glomeruli to
individual Kenyon cells lack any organization with respect to
their odor tuning, anatomical features, or developmental origins
[32]. In our TAB framework too, we have projected the input
from the input layer neurons to the hidden layer neurons in a
random manner. Random device mismatch cannot be avoided
in smaller process technology, and instead we are using it in the
TAB framework to encode the input variable.

The TAB is a feed-forward network of three neuronal layers,
namely input, hidden, and output, structured on the linear
solutions of higher dimensional interlayers (LSHDI) principle
[33] (Fig. 1). The input layer neurons are connected to a larger
number of hidden layer neurons via fixed random weights.
Consequently, the inputs are projected randomly and trans-
formed to a higher dimensional feature space by the nonlinear
hidden layer of neurons. In effect, the input data points, which
are not linearly separable in their current space, find a linear
hyperplane in the higher dimensional space that approximates
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a desired function as a regression solution, or represents a
classification boundary for the input-output relationship. The
output layer neurons derive a solution by computing only a
linearly weighted sum of the hidden layer values. These linear
weights are evaluated analytically by computing the product of
the desired output values and the pseudoinverse of the hidden
layer neurons output [34]. The TAB also employs systematic
offset (Oi, Fig. 1) and preferred direction (PD), both of which
help to diversify the tuning curves of the hidden layer neurons.
Preferred direction (PD) implies that the activation function
for one half of the hidden layer neurons may be sigmoid,
and −sigmoid for the other half, and this may be assigned
deterministically or randomly. Previously proposed networks
based on the LSHDI principle include the functional-link net
computing (FLNN) by Pao et al. in 1992 [35], the extreme
learning machine (ELM) by Huang et al. in 2006 [17], and
the neural engineering framework (NEF) [16], which performs
spike-based computation and is quite popular in the neuromor-
phic engineering community.

III. VLSI IMPLEMENTATION OF TAB

In order to demonstrate that the TAB is effective in smaller
process nodes that are normally prohibitive to analog design
(at and beyond 65 nm) [36], we have designed the TAB pro-
totype in a 65 nm technology. Further, a substantial section of
the TAB was designed using minimum feature sizes so as to
maximise mismatch among transistor parameters. Differences
among the hidden layer neuronal responses can be enlarged by
using an additional distinct systematic offset for each hidden
layer neuron. As a proof of concept we have implemented a
single input-single output (SISO) version, with a single input
voltage and a single output current. We elucidate below the
VLSI implementation of the major building blocks of the TAB,
namely the hidden neuron and the output weight [29].

A. Hidden Neuron

Evidence has shown that neurons in a population respond to
the same stimuli heterogeneously [37]. We use a differential
pair to implement a simple neuron model in the TAB. The
differential pair performs a nonlinear operation on its input,
similar to the sigmoid tuning curve of the stereo V1 neurons in
the cortex [38]. In Fig. 2, Vin (input voltage) and Vref (constant
reference voltage) are the gate voltages for the differential pair
of transistors, M1 and M2, and influence the sharing of currents
between them. These transistors operate in the weak-inversion
regime, with the slope factor (n) ranging from 1.1 to 1.5 [39].
The currents in transistors M1 and M2 can be described as:
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where Ib is the maximum bias current, Vin is the ramp input
voltage, Vref is the constant input voltage, and UT is the
thermal voltage.

Fig. 2. Hidden Neuron Block. Schematic of the hidden neuron block that
implements the sigmoid nonlinear activation function for the TAB framework.
Adapted from [29].

The current I1 is copied to Ihid via a current mirror, which
acts as a sigmoid tuning curve for a hidden neuron. The voltage
at the M3 transistor, Vb, sets the bias current (∼few nano-
amperes). In the TAB, each neuron has a distinct tuning curve
depending on the process variations such as offset mismatch
between the transistors in the differential pairs, bias current
mismatch due to variability in M3 and current mirror mismatch.
Each neuron may receive a systematically different Vref in the
TAB, which is a failsafe method to achieve a distinct tuning
curve for each neuron. This may be required in the case of
insufficient random variations, which is likely in higher feature
size process technology.

B. Output Weight

The output weight block connects the hidden layer and the
output layer via linear weights. These are controlled by a 13-bit
binary number, which is stored in digital flip-flops that regulate
the amount of current flowing from the hidden layer neurons
to the output layer neurons. We have implemented binary
weighted connections using a splitter circuit (Fig. 3) [40]. The
output from the hidden neuron block, Ihid, is the input current
for the output weight block. Ihid is divided successively to form
a geometrically-spaced series of smaller currents. A digital
binary switch controls each current branch. A fixed fraction of
the current is split off at each branch, and the remnant continues
to the later branches. There are a total of N stages in the splitter
circuit. The current at the kth stage is given by (Ihid/2

k).
The master bias voltage Vgbias is the reference voltage for
the p-FET gates in the splitter [40]. As shown in Fig. 3, two
transistor switches in the lower half of the circuit route the
branch current to either useful current, Igood, or to current that
goes to ground, Idump. Igood is mirrored to generate a current,
Iout, which is further routed to currents Ipos (positive current)
or Ineg (negative current), as determined by the signW signal.
The signW signal, stored in flip-flop, indicates the polarity
of the output weight connected between the hidden neuron
and the output neuron. In a hidden neuron, the 13-bit output
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Fig. 3. Output Weight Block. Schematic of the output weight block, com-
prising a splitter circuit wherein MR and the two M2R transistors form an
R2R network, which gets repeated 13 times in the block. The octave splitter is
terminated with a single MR transistor. Adapted from [29].

weights and signW are connected as shift registers. Internal
shift registers of all the hidden neurons are connected serially
as a long chain at the top level. The shift registers are loaded
with off-chip calculated weights and are used to regulate the
current in the output weight block.

This TAB chip was designed for a single input and a single
output configuration with 456 neuron blocks, the number of
neuron blocks being constrained by the chip area. Each neuron
block integrates a hidden neuron, an output weight block and
a 13-bit shift register, which is used for loading the learned
weights. At a particular time, each neuron block receives the
same input voltage, Vin, which is weighted by a random weight
and a random offset arising due to process variations. Addi-
tionally, each neuron may exhibit a distinct reference voltage,
Vref , in the differential pairs of the hidden neuron. This leads
to different differential voltages for each neuron block, and as
a result different currents, Ihid, are generated for each block.
Each Vref is tapped from a long poly-silicon wire, the end
points of which are connected to the top level voltage pins,
Vref1 and Vref2. The poly-silicon wire behaves as a long
distributed resistor element that acts as a voltage divider and
generates different reference voltages, Vref , for each neuron
block. For each new input, the hidden neuron block calculates
Ihid, which passes to the output weight block. In the output
weight block, Igood is mirrored to make Iout (Fig. 3), which
is further routed to currents IoutP (positive current) or IoutN
(negative current), as determined by signW signal. IoutP and
IoutN currents of each neuron block are connected globally to
each other, and they are summed up to provide the final current
that is the final output of the TAB. We use an off-chip current-
to-voltage converter and amplifier circuits to convert the final
output current into voltage for ease of measurement.

IV. LEARNING SET-UP

We now discuss the algorithm used for the offline learning
of the TAB IC. In the TAB framework, learning is achieved
by computing output weights to train the system for desired

regression/classification tasks. The output weights (between the
large hidden layer and the linear output neurons) are estimated
analytically by calculating the product of the pseudoinverse of
the hidden layer activations with the target outputs [18]. We
briefly summarize the learning setup below. More details can
be found in [29].

Let us consider a three-layer feed-forward TAB network with
L number of hidden neurons. Let G(., ., ., ., .) be a real-valued

function so that G(w
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sistors. The random input weight, w(1), varies according to
a log-normal distribution (Fig. 6(c)) due to the exponential
relationship between the voltage and the current of a transistor,
while the random bias, b(1)i , exhibits a Gaussian distribution

(Fig. 6(b)). Preferred direction (PD), denoted as d(1)i ∈ [−1, 1]
is added to incorporate flexibility of changing the direction of
the tuning curve either towards positive or negative values. PD
assignment to the hidden neurons could be chosen either ran-
domly or deterministically. Systematic offset o(1)i ∈ R is added
to ensure that each neuron exhibits a distinct tuning curve,
which is an essential requirement for learning in the LSHDI
framework [29]. The output vector y ∈ R

k can be written as:
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where, g: R → R is the activation function.
The output weight vector,w(2)

i , can be written in matrix form
for all the hidden neurons as W (2). The least squares solution
of the output weight matrix, W (2), as described in [17] is:

W (2) = H+Y (5)

where, H+ is the Moore-Penrose generalized pseudoinverse of
the matrix H . The matrix H is the output of all the hidden
neurons (G) for all the input training data samples. The matrix
Y is the collection of the output vectors for the training dataset.

V. CONSTRAINED ALGORITHM

The pseudoinverse algorithm is a quick and easy method to
estimate the parameters of a linear regression problem with a
quadratic cost function. It is an unconstrained algorithm that
can compute output weights in any range, and thus is not suited
for hardware implementation of the TAB system. In a pseudoin-
verse operation, some of the weights may go to large values. As
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a result, the spread of the weights becomes very large, which
reduces the dynamic range of the output weights and requires a
higher number of bits. In order to keep the weights in the range
[−1, 1] and to minimize the spread, we have used a constraint-
based algorithm for the weight calculations. As shown in Fig. 3,
the output weight block acts as a current divider, implying that
the ratio of the output to the input current is always less than 1.
Thus, we used the method of least squares to calculate the
output weights, with additional constraints to calculate weights
in the range of (−1, 1). As mentioned in the previous section,
we collect the tuning curves of all the hidden neurons for all
the training inputs. We created a function, fcost_grad, which
calculates the squared error cost, fcost (6), and the gradient,
fgrad (7), for a given training set. Our purpose is to estimate
W (2) while minimising the cost function fcost. The function
fcost_grad is passed as an argument along with the weight con-
straints to thefminconoptimisation solver of MATLAB, which
uses sequential quadratic programming [41]. We define the
cost function and gradient of the linear regression problem as:
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The function fmincon is an optimization solver that finds
the minimum of a constrained function. For linear regression,
we want to minimize the cost function fcost with parameters
W (2) using a given fixed training set.

VI. RESULTS

A. TAB Learning in Software Simulation

Here, we show the software simulation results of the TAB
network using a single input and a single output configuration.
We built the TAB network with 50 hidden neurons with 13-bits
output weight, and tested its ability to learn different functions
such as sine and square, using constrained offline learning.
In the TAB, we used the sigmoid function as the nonlinear
activation function (tuning curve) for each hidden neuron. We
used the offline learning setup as mentioned in Section IV, and
the fmincon solver from MATLAB to calculate the output
weights externally. We presented the training data to the net-
work, each training pair containing an input, x and an output, y.
Each input training value is randomly and systematically offset
and multiplied by random weights for each hidden neuron, and
is projected randomly to 50 hidden neurons in this manner. For
every input data point, we collected the response of the hidden
neurons and created a matrix H , as shown in (5). We used the
constrained algorithm to calculate the output weights. In the
testing phase, we presented the test input to the network and
obtained a predicted output. We show that the TAB system is
able to learn the various functions successfully (Fig. 4). We

Fig. 4. Learning curves for the regression functions. (a) sine. (b) square.
The red curve represents the target function, and the green curve represents
the learnt function.

normalised our input range between −1 to +1 V to simplify the
function argument. From the simulation results, we can see that
the learned function closely matches with the target function.
Fig. 4(a) and (b) show the results from training the network for
the sine and square functions, with a test accuracy of 0.67% and
0.53% with respect to the RMS of the target signal, respectively.

B. Analysis of Hidden Nodes and Output Weights

The size of a circuit grows linearly with the number of hidden
nodes and the number of bits in the output weights. We first
examined the number of hidden nodes and bits needed in our
system using software simulations. The optimum number of
hidden nodes and bits was found to vary with the desired target
function, with some functions, such as sinc(x), proving much
more difficult to learn than others, such as x2. Fig. 5(a) shows
the RMS error between the target function and the learned
function as a function of the number of hidden neurons, for
both y = sinc(6πx), and y = x2. The mean RMS error was
calculated for 10 simulations with different random weights
from the input to the hidden nodes. In these simulations, we
used 13-bits for the output weights. It can be seen that the
standard deviation is quite high for low number of hidden
nodes, but for a larger number of hidden nodes the result
becomes largely independent of the random weights. It is also
clear that the y = sinc(6πx) function needs significantly more
hidden nodes than y = x2 to be learned accurately.
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Fig. 5. (a) Plot of the RMS error between the target function and the learned
function versus the number of hidden nodes. The error bars show the standard
deviation. (b) The RMS error versus the number of bits/weight used for the out-
put weights for the function y = sinc(6πx). The error bars show the variance.

TABLE I
FEATURES OF THE TAB SISO CHIP

The RMS error as a function of the number of bits used
for the output weights, for y = sinc(6πx) for a network with
100 hidden nodes is shown in Fig. 5(b). Again, these are the re-
sults of 10 simulations with different random weights from the
input to the hidden nodes. Clearly, the higher the resolution in
the output weights, the closer the digital weights can approach
the weights found by the offline learning (which are real-valued
numbers) and the better the function can be implemented. From
about 8-bits onwards, the standard deviation is negligibly small,
and the RMS error becomes almost totally independent of the
random weights. Increasing the number of bits per weight is a
matter of diminishing returns, and 11-bits seem sufficient, even
to learn this difficult function.

C. Neuron Characterization in the TAB IC

A TAB prototype was fabricated in the 65 nm process tech-
nology with 456 neuron blocks. Table I summarizes the system
level features of the TAB chip. In the TAB, we have used a cur-
rent gain circuit (100×), consisting of two sets of current mir-
rors each with a gain of 10, to amplify the final output current

Fig. 6. Hidden neuron characterisation results for a total of 456 neurons.
(a) sigmoid tuning curves of all the neurons show the variation in offset and
the minimum current value. (b) Random offset present in the chip across all the
456 neurons. (c) Variation in the current amplitude of the tuning curves of all
the 456 neurons exhibits a log-normal distribution, as expected.

for measurement purposes, which may not be required in actual
applications. The actual power dissipation of the TAB core is
much smaller than that of the output stage. Thus in Table I we
report the power consumption with and without the output gain
stage. We have also characterized the speed of the TAB by the
step response. The dominant pole of the system is dominated
by the first output current gain (10×) circuit. The measured
time constant of the TAB for the step response is 2.3 μS. The
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actual time constant of the TAB without the output current
gain mirrors would be much smaller than this, but we cannot
measure it in the current system.

We characterized the tuning curve of each neuron to analyze
the mismatch and differences between the tuning curves of the
hidden neurons without any systematic offset by connecting the
Vref node (Fig. 2) of each hidden neuron to the same voltage.
Learning is better if there is a high diversity between the tuning
curves of neurons [29], [31]. As shown in Fig. 6, we obtained
heterogeneity in the neuronal tuning curves due to random
device mismatch and process variations in the fabrication. Each
neuron block contains a hidden neuron and output weight block
(Section III) with shift registers. The shift registers of all the
hidden neurons are connected serially as a long chain. Due to
the large number of hidden neurons, it is not feasible to have
dedicated output ports to probe the output current for each hid-
den neuron. Therefore, the output current of each hidden neuron
is probed indirectly through the “OUT” port of the IC one-by-
one. The output weight block behaves as a current splitter, i.e.,
if all the bits of a weight are one, the output current of the output
weight block would be almost the same as its input current, and
if all the bits of the weight are zeros, the output weight block
will produce nearly zero output. We characterized each neuron
sequentially. We loaded the output weight between the hidden
neuron of interest and the “OUT” port to be 13’h1FFF, and all
other weights between the remaining hidden neurons and OUT
port to be 13’h0000. The MSB (most significant bit, 13th bit
here) represents the sign of the output weight, where “1” repre-
sents negative weight. Then, we provided the ramp input to the
TAB and measured the current at the output port. We collected
the tuning curves of all the neurons (Fig. 6(a)) and plotted the
statistical variation in voltage offset and current amplitude of
the tuning curves (Fig. 6(b) and (c)). We have normalized each
current by dividing it by the geometric mean of currents from all
the hidden neurons, and then modelled it as a log-normal distri-
bution with location (μ) and scale (σ) parameters (Table I). In
order to calculate the random voltage offset (Fig. 6(b)), we have
used the same Vref for all the hidden neurons. Ideally, when the
input for a neuron is equal to Vref , the neuron reaches half of
its output current and the slope of the tuning curve is maximal
at this value. However, the actual maximal slope is typically
obtained at a slightly different input voltage. The offset shown
in Fig. 6(b) is taken as the difference between this input voltage
and Vref , and expressed as a percentage of Vref .

D. Learning Capability of the TAB IC

In this section, we show the ability of the TAB IC to exploit
device mismatch. To learn a particular mapping from input to
output, we calculate the weights externally. In order to do this,
the output of hidden neurons for a given input sample needs to
be probed. For L hidden neurons and C distinct input training
values (x1, . . . , xC), the hidden layer activation matrix HCxL

is obtained, and the value of weights is calculated using the
offline learning setup as described in Section IV. We collected
the tuning curves of all the hidden neurons sequentially by
measuring the current at the output port, as described above in
Section VI-C. After collecting all the data, we calculated the

Fig. 7. Learning in the TAB chip for the functions: (a) sine, (b) square,
(c) cube. Top and bottom graph in each figure represent input to the TAB and
trained output from the TAB.

output weights using the constrained algorithm. We trained the
TAB IC for various regression tasks such as sine, cube, square
functions as shown in Fig. 7. The output for the functions
matched with the desired output with an RMS error of 9.4%,
4.5%, and 5.6% for the sine, cube, and square functions,
respectively, with respect to the RMS of the target signal.
The error here is larger as compared to that obtained in the
software simulations because the response of the output weight
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Fig. 8. Comparison of the regression error for the functions without (left) and with (right) systematic offset: (a) sine, (b) square, (c) sinc.

block has some nonlinearity [29]. This nonlinearity may be
compensated by characterizing each output weight block re-
sponse and including these as constraints when solving for the
output weights. However, this would be very cumbersome to
implement for each IC. In order to overcome this issue, we
have implemented an online learning rule in the chip, which
automatically adapts to the mismatch of each output weight
block. This implementation is described in [42].

E. Encoding Capacity of the TAB IC Due to Random
Mismatch (RM) With and Without Offset

The variations in the tuning curves, as shown in Fig. 6, are
crucial in learning any regression or classification task. It is
evident from Fig. 6 that the heterogeneity in the tuning curves is
not sufficient to cover the entire range of the input. For instance,
below 0.4 V or above 0.8 V the output of each neuron hardly
changes. Thus, it is difficult to learn a target function in those
input ranges when just exploiting the inherent device mismatch.
For this reason, we introduce a systematic offset to the neurons,
so that over the full input range some neurons’ output is always
changing. Fig. 8 shows the improvement in accuracy resulting
from this by comparing the error of the TAB using 30 hidden

neurons for a few regression tasks for both configurations—
i) using the inherent device random mismatch only, and ii) using
an additional systematic offset with the device mismatch.

In Fig. 8, we show the distribution of the RMS errors for
100 different combinations of 30 hidden neurons chosen ran-
domly out of a total 456 neurons without any systematic offset
(blue), and with systematic offset (pink), for y = sin(x), y =
x2 and y = sinc(4x) functions. The results show that some
combinations of tuning curves of hidden neurons encode better
than others. It is also evident that the regression error is much
lower when we use systematic offset than without.

It can be concluded that the TAB chip has a large encoding
capacity as a result of the diversity of neuronal tuning curves,
which in turn arises from random device mismatch and sys-
tematic offset. The TAB is able to perform the regression tasks
using only device mismatch without using systematic offsets,
i.e., exploiting just the inherent mismatch, but its performance
is suboptimal in this mode. A better solution is obtained by us-
ing systematic offset of the tuning curves. In this configuration
the TAB is tolerant to significant amounts of device mismatch,
allowing it to operate on smaller IC technologies. The TAB
is thus a unique framework that overcomes the limitations of
random device mismatch and employs them to its advantage.
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VII. CONCLUSION

In this paper, we have presented a novel neuromorphic TAB
architecture inspired from the phenomenon of population cod-
ing present in the nervous system, which is tolerant to random
device mismatch (fixed-pattern mismatch) and variability in the
fabrication process. We have presented measurement results of
our first prototype IC designed in 65 nm for a single input and
a single output configuration of the TAB system. The TAB also
incorporates systematic offset as a failsafe method to spread the
tuning curves of the neurons. Systematic offset may be required
when there is insufficient random variation among transistors to
produce a distinct tuning curve for each neuron, which is highly
likely in higher feature size process technology. We have also
shown the learning capability of the TAB system for various
regression tasks.

The implementation of our framework in the analog do-
main offers various advantages over digital implementations
[43]–[47]. For example, addition in an analog circuit is com-
puted simply by connecting the common output line to sum the
currents and multiplication in the TAB is implemented using
output weight circuits with a few transistors (Fig. 3), while a
digital implementation requires several thousands of transistors
for the same computations. Although the output weight circuit
is not linear, this can be compensated by an on-chip learning
rule, which is described in our other work [42]. Our system
offers very low power consumption in the range of a few μW
(Table I) with a very high encoding capacity. Also, the analog
implementation of the TAB is easy to interface with the real-
world sensors, which by their nature, are analog, as compared
to digital implementations, which always require an analog-
to-digital converter (ADC). Moreover, the implementation of
the tuning curves in digital requires much higher transistor
counts [48], [49]. As compared to other analog implementations
[50]–[52], the TAB framework uses random input weights and
thus does not need any additional input weight circuits. The
TAB can be used as a low power analog signal processor,
using very small and simple circuits, which can be used to
learn any arbitrary functions and perform classification tasks.
Unlike other spike based implementations [13]–[15], the TAB
performs all the computation in the analog domain using the
digital weights, which saves extra conversion circuits.

The TAB is inspired by neural population coding which is
very robust in the face of damage of a few neurons, and does
not have a disastrous effect on the encoded representation as
the information is encoded across many neurons. The TAB
system is designed using neuromorphic principles based on
stochastic computation. We envisage the TAB to overcome the
limitations of analog IC design at low process nodes and drive
the integration process with digital blocks in the same circuit
and process node. This may find applications in analog/digital
converters (ADCs) and digital-to-analog converters (DACs) for
submicrometer mixed signal chips such as those used in mobile
processor chips and data acquisition chips.

The main significance of our TAB is that it solves the
problem that increased device mismatch in modern IC manu-
facturing technologies causes for analog design. It works better
with a considerable amount of device mismatch, and accurate
mappings from input values to output values can be obtained

without needing to engineer the effect of device mismatch
out of the circuit, as is done currently. A further significant
advantage of this approach is that the same TAB may be
reused for many different purposes once manufactured, and
the same architecture may be used in different manufactur-
ing technologies. This will lead to a significantly reduced
design cycle for analog circuits, with an associated reduction
in design cost, and a speed-up of technological progress. The
TAB may also be (re-)trained “on the job.” This could be a
major advantage in systems where the input-output mapping
of a TAB needs to be changed because of changes in the
system. An example would be in a communication system
where a TAB is used as a filter to process the analog sig-
nal before digitization, in which the communication chan-
nel changes over time. The TAB can be re-trained with the
communication channel in the loop to compensate for the
changes. Furthermore, as the TAB framework desires large
random mismatch among devices, and as mismatch is inversely
proportional to device area, it could lead to significant reduc-
tions in chip area and manufacturing costs. Also, the failure of
a few neurons would not affect the performance of the TAB
as information is encoded into a large ensemble of neurons.
Recently, we have built a multi-input TAB chip, where inputs
are randomly weighted and combined using a follower circuit,
as described by Vittoz [5]. Future work will aim to test and
verify multi-input TAB chip for classification tasks.
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