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Abstract—We have added a simplified neuromorphic model
of Spike Time Dependent Plasticity (STDP) to the previously
described Synapto-dendritic Kernel Adapting Neuron (SKAN), a
hardware efficient neuron model capable of learning spatio-tem-
poral spike patterns. The resulting neuron model is the first to
perform synaptic encoding of afferent signal-to-noise ratio in
addition to the unsupervised learning of spatio-temporal spike
patterns. The neuron model is particularly suitable for implemen-
tation in digital neuromorphic hardware as it does not use any
complex mathematical operations and uses a novel shift-based
normalization approach to achieve synaptic homeostasis. The
neuron’s noise compensation properties are characterized and
tested on random spatio-temporal spike patterns as well as a noise
corrupted subset of the zero images of the MNIST handwritten
digit dataset. Results show the simultaneously learning common
patterns in its input data while dynamically weighing individual
afferents based on their signal to noise ratio. Despite its simplicity
the interesting behaviors of the neuron model and the resulting
computational power may also offer insights into biological sys-
tems.
Index Terms—Delay plasticity, neuromorphic engineering,

spatio-temporal spike pattern recognition, spiking neural net-
work, synaptic plasticity, temporal coding.

I. INTRODUCTION

S YNAPSES are by far the most numerous computational
elements in the brain and in neuromorphic systems. Due

to their large numbers, the return on investment on synapses,
i.e., howmuch functional computation they perform versus how
much hardware resources they take up, becomes a defining fea-
ture of any neural system whether evolved or designed by an
engineer [1]–[3]. Thus the extraction of the most functionality
from the fewest, simplest synapses is often a central focus for
the neuromorphic engineer [4], [5].
In the context of neuromorphic systems the synapse serves

three essential functions. The first is simply to form a connec-
tion from one neuron to the next. The second is to spread the
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Fig. 1. Comparison of neuromorphic implementations of synapto-dendritic
kernels. The characteristics of realized Excitatory PostSynaptic Potential
(EPSP) kernels are computationally important just prior to being summed at the
soma. These kernels represent the cost function used to translate the temporal
error in spatiotemporal spike patterns at the synapse to the somatic membrane
potential. Due to the large number of synapses neural network systems require,
the complexity, functionality, and hardware cost of these kernels is a critical
feature of neuromorphic spiking networks. (a) An exponentially decaying
kernel typically used for modelling synapses. (b) A simplified synaptic model
with the kernel modelled as a binary delayed window. (c) SKAN. Adapted
from [8].

energy of the presynaptic input spike over time via the synaptic
kernel and the third is to weigh this kernel such that when it is
added to other similarly weighted synaptic kernels, the resulting
summation, called the somatic membrane potential, is a useful
signal encoding functionally relevant information such as how
well an input spatio-temporal pattern matches those commonly
seen in the past.
While the realization and use of these distributed

kernel-based processing units has evidently been mastered by
evolution, despite significant recent progress, our best engi-
neered systems still find the large-scale realization of these
three functions challenging. The first and simplest function of
the synapse, that of acting as the connection between neurons
represents the greatest hardware challenge. Limitations in
network bandwidth or connectivity are often the most serious
obstacles restricting full utilization of neuromorphic hardware
resources. Innovative approaches such as time multiplexing
[3] and Address Event Representation (AER) [6], [7] can
create virtual all-to-all connected networks, however, these
advantages come at the expense of reduced operating speed.
The second function of the synapse, that of spreading an

input spike’s energy over time can be realized via a range
of synaptic kernels with varying levels of complexity, hard-
ware cost and computational utility. Two extremes include
an exponentially decaying kernel shown in Fig. 1(a) which is
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typically used to model biological synapses [9], and the simple
delay learning approach with a binary kernel and a temporal
tolerance window shown in Fig. 1(b) [10]. In the ideal synaptic
model, a real-valued synaptic alpha function is multiplied by
a real-valued synaptic weight with the later adapting to input
spikes to model synaptic weight adaptation. However the cost
of implementing this synaptic kernel in large numbers in digital
hardware is substantial as it requires the realization of a multi-
plier at each synapse. In addition, the alpha function does not
model the computationally useful peak delay adaptation effects
observed in biology [11] which necessitates the realization of
multiple synapses for learning arbitrary delays.
The third function of the synapse, that of weighing the kernel,

requires another multiplication operation between the synaptic
weight and the instantaneous value of the EPSP kernel. For
real-valued synapses and kernels the hardware cost of this mul-
tiplication operation can be prohibitive [4]. At the other end of
the spectrum, rather than implement complex synaptic weight
adaptation, other neuromorphic implementations of spiking net-
works have focused on the adjustment of explicit propagation
delays along the neural signal path to encode memory [10],
[12], [13]. Here the energy of the spike is spread via a binary
valued tolerance window as shown Fig. 1(b). This discarding of
synaptic weights significantly simplifies implementation and al-
lowsmore synapses to be realized. The down side is that explicit
window-based delay learning schemes can produce “sharp” sys-
tems with lower tolerance for the dynamically changing tem-
poral variance they inevitably encounter in applications where
neuronal systems are expected to excel: noisy, dynamic and un-
predictable environments [14]. In addition while use of these
simplified kernels allow more synapses to be realized, limited
network bandwidth can sometimes mean that these larger num-
bers cannot actually be fully utilized.
In this context, the proposed Synapto-dendritic Kernel

Adapting Neuron (SKAN) model, which is the focus of this
work and is shown Fig. 1(c), uses fully adaptable yet simple
accumulator based kernels. Here it should be noted that the
kernels of SKAN do not directly model individual synapses,
which have kernels that are approximately static. Instead
the kernels are simplified models of multiple synapses with
different kernels combined with the adaptive properties of
dendritic tree on which they reside [11], with the assumption
that the function of the whole system is to create a mapping
from the afferents to the soma such that commonly presented
spatio-temporal patterns are preferentially transmitted. In this
way SKAN is an attempt to model the entire input to soma
coupling system in as simplified and hardware amenable way
possible. Having made this distinction, the word synapse will
be used to refer to the entire system.
These adaptable kernels allow each synapse to learn any

delay, such that the number of synapses required equals only
the number of input channels or afferents [15]. SKAN’s live
unsupervised hand gesture learning and recognition has been
demonstrated in [16] using a neuromorphic visual scene to
spatio-temporal spike pattern transformation [17]. Although
the SKAN neuron exhibits robustness to noise this robustness
is achieved through the adaptation of its soma to overall input
noise which means that the neuron has a single measure for

Fig. 2. Schematic of the elements and information paths in SKAN. The input
spikes trigger adaptable synapto-dendritic kernels which rise up to the
synaptic weight and are summed to form the neuron’s somatic membrane
potential . This signal is then compared to an adaptive somatic threshold

which, if exceeded, results in an output pulse . The output pulse also
feeds back to adapt the kernels. Note that the back propagating signal does not
travel beyond the synapto-dendritic structures of the neuron to previous neural
layers. Adapted from [8].

the noisiness of its inputs and assumes a homogenous signal to
noise ratio at all input synapses. In this work, by introducing a
simplified Spike Time Dependent Plasticity (STDP) rule to each
synapse, the neuron model is enhanced such that the synapses
adapt independently to their noise environment, improving
spatio-temporal spike pattern recognition.

II. SYNAPTO-DENDRITIC KERNEL ADAPTING NEURON

A. Kernel and Threshold Adaptation Mechanisms
The dynamics of SKAN have been previously described in

detail for the special case of static weights [8]. Fig. 2 illustrates
the functional diagram of the neuron.
At each synapse the presynaptic input spike triggers

the EPSP kernel, which is the central element of SKAN and is
modeled as an adaptable kernel in the form of a simple ramp-
up-ramp-down sequence . After being triggered rises
with slope until it reaches the synaptic weight variable

. In the previously proposed SKAN model these weights
are static and do not change over time. After reaching
the kernel ramps down with the same slope and returns to zero.
These EPSP kernels spread the energy of the input spike signals
over time allowing them to be summed at the soma to generate
the somatic membrane potential , which is compared to
the threshold to generate an postsynaptic output pulse .
The back propagation of this output pulse in turn adapts the
slope of the kernels such that, if a kernel is rising at the
time of the output pulse, it is deemed to be too late and so its
slope is increased, making the kernel sharper. Alternatively if
the kernel is falling at the time of the output pulse, it is deemed
to be too early and its slope is decreased such that the kernel
becomes wider. This simple kernel slope adaptation rule aligns
the peaks of many synaptic kernels in response to repeated pre-
sentations of the same spatio-temporal pattern. As the kernel
peaks become ever more aligned their summation at the somatic
membrane potential forms an ever higher and narrower peak as
shown in Fig. 3.
In addition to the kernel adaptation, which captures the tem-

poral information of the input pattern, the neuron’s threshold
also adapts: At every time step during an output pulse the
threshold rises and every time the membrane potential returns to
zero the threshold falls, as indicated by the grey circle in Fig. 3.
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Fig. 3. Kernel adaptation in SKAN with static synaptic weights. The kernels
and the threshold of SKAN adapt in response to repeated spatio-temporal
pattern presentations. The kernels have captured the ISI information by
the third presentation of the pattern. With each subsequent presentation the
threshold increases making the neuron more selective as the kernel
step sizes increase, making the kernels narrower. As a result, each
pattern presentation increases the neuron’s confidence about the underlying
process producing the ISI’s, narrowing the neuron’s receptive field around the
target ISI, and producing a smaller output pulse . By the 11th presentation

, the during the output spike and balance each
other such that the . The soma output spike is
now a finely tuned unit delta pulse which indicates high certainty. When the
membrane potential returns to zero, the neuron’s threshold falls as indicated by
the grey circle. Adapted from [8].

As the neuron spikes more in response to a particular pattern,
its threshold rises, making the neuron ever more selective for
the pattern that triggered it and narrowing its spatio-temporal
receptive field. Conversely, unrecognized input patterns, which
do not cause an output spike, reduce the threshold, making the
neuron more receptive to new patterns. Through this feedback
mechanism the neuron automatically maintains a balance be-
tween selectivity and generalization in response to the statistics
of its environment.
In the following sections the synaptic weight adaptation of

SKAN and the resulting behaviors of the neuron are described.

III. WEIGHT ADAPTATION VIA SIMPLIFIED STDP

A. Simplified Weight Update Rule

In biology the rules governing synaptic weight adaptation
vary enormously both in degree and in type across species, brain
regions, synapse types, cell types, within individual cells, over
short time scales, and as a function of organism development
[18]. However, the STDP rule shown in Fig. 4(a) is by far the
best studied synaptic plasticity rule in neuroscience today due to
its reproducibility and neurocomputational utility in selectively
strengthening synapses such that given a large enough number

Fig. 4. Comparison of the classical STDP synaptic weight update curve with
the simplified kernel based STDP used in this work. (a) In the classical STDP
update rule, a synapse has its highest weight increase if it receives a presynaptic
input spike just prior to a postsynaptic output spike. Conversely a postsynaptic
output spike that precedes a presynaptic input spike causes the greatest decrease
in synaptic weight. Both effects decay with longer inter-spike intervals. (b) In
the simplified model used in this work, the adaptable EPSP kernel not only
learns the commonest pre/post synaptic spike interval, but also doubles as a
flag that enables the increase in synaptic weights in the event of a postsynaptic
spike.

of hetergenous synapses with different intrinsic delays, any ar-
bitrary spatio-temporal pattern can be learnt by a single neuron
[19]. As a consequence, the faithful modeling of this rule in
hardware is now a major focus in neuromorphic engineering
[9]. In this model of synaptic plasticity the strengthening or
weakeing of synaptic transmission efficiency is typically mod-
elled by an exponential decaying function of the inter-spike
interval between the pre- and post- synaptic spikes as shown
Fig. 4(a). As with the smooth synaptic alpha function, such ac-
curate modelling of neurobiological processes can incur addi-
tional hardware costs while providing little computational im-
provement compared to even highly simplified models [20].
Therefore, as was the case with SKANs simplified kernels, in
this report, the classic STDP rule is replaced with the simi-
plified weight update rule shown in Fig. 4(b). The rule is de-
signed so that it reuses the same signals and flags that are al-
ready present in the static weight SKAN system, such that the
presynaptic input spike , which triggers the EPSP kernel

, also triggers a binary weight adjustment flag If a
back-propogating postsynaptic output spike, , arrives while
this flag is high, then the synaptic weight is increased by

and the flag is reset to zero. Alternatively if the membrane
potential , returns to zero before an output spike arrives,
then the synaptic weight is decreased by and the flag is
returns to zero. These two rules are described in (1) and (2).

if
if (1)

if
if (2)

Where is the falling edge of the postsynaptic output spike
and is the return of the membrane potential to zero

.
As a result of (1) and (2), every time the membrane potential

rises due to input spikes, the synaptic weights of the activated
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inputs either rise in response to the resultant output spike or they
fall when the membrane potential returns to zero.
This simplification of the STDP model significantly reduces

hardware costs. By using the EPSP kernel as a binary flag of
adaptable duration, the need for realization of the exponentially
decaying function of Fig. 4(a) is eliminated and the use of the
constant update terms and replaces the addition of
two arbitrary values, and , which would otherwise
be required at each synapse and which is significantly more
costly in terms of hardware resources in comparison to constant
terms which can be hardwired.
Additionally unlike in classical STDP, in the proposed model,

if an output spike were to be triggered just after the membrane
had returned to zero (say by an external stimulator) there would
be no change to the synaptic weight, but in the normal operation
of the neuron, this simplification of the model does not affect the
overall behavior. Similarly, in the SKAN model multiple input
spikes that arrive within a short time or in bursts are covered
by the EPSP kernel of the leading spike and are invisible to the
system. This reduction is arguably desirable as it correlates well
to real world event driven stimuli where relative stimulus onset
times across afferents carry salient information.

B. Synaptic Weight Normalization Without Division

An additional layer of complexity arises through the need
for synaptic homeostasis which is required to keep the synaptic
weights within some limited dynamic range while preserving
their relative strengths. In the biological context a number
of homeostasis models have been proposed [21], [22]. The
common feature of these models is divisive normalization
where the strength of all synapses in a neuron are rescaled via
division by a global signal which keeps all synaptic weights
within their physiological dynamic range while preserving
their relative transmission efficiency. The implementation of
this normalization operation in digital hardware again involves
multiplication operation at each synapse.
In this work we propose a novel digital approach to this

problem that eliminates the need for this multiplication. The
synaptic weights and other variables in the neuron all of which
are implemented using unsigned integers are normalized not
via multiplication but bit shift operations. Here, instead of nor-
malizing the synaptic weights such that the max of the weights,

, or the sum of the weights, , is clamped to
a specific value, the max signal is allowed to vary within the
top half of a digital range, updated by the weight update rule
of (1) and (2). When the update rule pushes the
signal beyond this digital range, all the neuron’s signals, i.e.,
the weights , EPSP kernels , EPSP kernel step-sizes

and the threshold , are right shifted, (division by 2).
Conversely if the signal falls below half its range, all the signals
of the neuron are left shifted (multiplication by 2) as shown for
a synapse case. These two conditions simplify to (3) and (4).

(3)
(4)

Fig. 5. Comparison of fixed point division and shift based normalization
for encoding the relative strengths of synaptic weights within an 8-bit
dynamic range. The two synapses with weights and are updated
by two independent non-zero mean stochastic processes. The panels on
the left show the encoded weights while the panels on the right show the
relative weights with the strongest synapse normalized to 1 (calculated via
floating point division). (a) The original weights of and with no
bound on their dynamic range: . (b) The
true relative strengths of the original synaptic weights. (c) Limiting the two
weights to between 0–255 (8-bit unsigned integer) via fixed point division:

. The black and white
bars indicate the top and bottom half of the digital range (0–127 and 128–255).
(d) Relative strength of the bounded 8-bit synaptic weights. The error plot
shows RMS error with respect to the original relative strengths shown in (b).
(e) 8-bit Shift based normalization showing the stronger signal triggering
shifts in both synapses as it exceeds the bounds of the top half of its digital
range: . Where denotes equations (3) and
(4). (f) The relative synaptic strengths encoded via shift based normalization
and the associated error.

The fact that all neuronal parameters, , and are
also shifted means that the neuron is essentially not affected
by the shift operations. As demonstrated in Fig. 5 for a two
synapse neuron, the overall effect of the shifting operations de-
scribed is to continuously generate more dynamic range such
that all weights become normalized while the max signal re-
mains within the range described by (5)

(5)

where is the number of bits used to represent the synaptic
weights.
Fig. 6 shows the error introduced in the relative strength of

synaptic weights through the use of shift based normalization
with varying bit-widths. In addition to the quantization noise
introduced, an important edge case occurs in the ‘right shift
neuron values’ operation, which requires a design decision in
terms of any weak synapses which go to zero. One option is to
not allow any weights to go to zero. This can be implemented



192 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, APRIL 2015

Fig. 6. RMS error of shift based normalization with respect to normalization
via double-precision floating-point division. Random synaptic weight updates
with were performed on a simulated 16 synapse neuron
with synaptic bit-width of 8 to 16. The RMS error of the relative weights of the
shift based synapses was calculated against synapses which were normalized
via double-precision division. Increasing bit-width in the shift based synapses
resulted in lower error but even at the lower bit-lengths the relative order of the
synaptic weights followed the floating-point implementation.

either by checking all bits of every synapse and setting to 1 any
that go to zero or simply by assuming the LSB of all synapses is
set to high without any zero checking. Another option in dealing
with synaptic weights that go to zero is to disable them com-
pletely. This can potentially allow re-allocation of the synapses
to other neurons. An application of this option is discussed in
Section IV.

IV. RESULTS

A. STDP and SKAN Combine to Produce Synaptic Encoding
of Afferent Signal to Noise Ratio (SNR)
Given static synaptic weights , the simple

kernel adaptation of SKAN can perform unsupervised learning
of common spatio-temporal patterns in noisy environments as
detailed in [8]. When this static weight model of SKAN is com-
bined with the synaptic weight update and the normalization
operation of the previous section, the neuron not only finds
and learns the most common spatio-temporal pattern, but addi-
tionally adjusts its synaptic weights independently to compen-
sate for the signal-to-noise ratio of individual afferents and thus
improves recognition performance. In this work the corruptive
noise is defined as additive noise spikes generated by a homo-
geneous Poisson process with rate . The signal represents
spatio-temporal spike patterns which are presented every T time
steps as shown in Fig. 6. The SNR is thus defined as the ratio
of the target pattern presentation rate 1/T, and the noise process
rate giving

(6)

To demonstrate the SNR encoding effect, consider the case
where the neuron is presented with repeated spatio-temporal
spike patterns that are received via noise corrupted afferents.
After several pattern presentations the neuron’s kernels ‘see
through’ this noise and adapt their slopes so that they

Fig. 7. Synaptic weight adaptation in a neuron with three synaptic inputs.
The first input channel is noisy while the other
two input channels are noise free. Input spikes trigger both the
kernel and the weight update flag . The output spike causes a
rise in the synaptic weight of all synapses by , while the return of the
membrane potential to zero induces a fall by , in the activated synapses
with . During the time interval shown the noisy afferent with weight

experiences two weight falls and one weight rise while the two noise free
afferents experience only one weight fall and one weight rise. As a result of
many such adjustments falls to its steady state value of approximately half
of and . The lower weighted synapses contribute less and less to the
membrane potential The full dynamic range of the synaptic are indicated by
the grey regions marked .

align with the pattern. This is because the noise is uncorrelated
with the pattern and it is just as likely to increase the slopes as it
is to decrease them such that the noise is averaged out, leaving
only the target pattern for the kernels to train on. Fig. 7 shows
what happens next for a case where one of the three afferents
is corrupted by , that is, where the probability of
the presence of a Poisson noise spike during any time period
equals the probability of a target spike belonging to the target
spatio-temporal pattern.
Noise spikes, being uncorrelated with the target pattern and

with each other, typically arrive on their own or in such a way
that their EPSPs are not enough to push the membrane potential

past the threshold to cause a postsynaptic output
spike. Such noise spikes do however reduce their respective
synaptic weight by . In the case where a clean target spatio-
temporal pattern arrives without any neighboring noise, all the
synaptic weights are increased equally by . The combined
result of these changes is that synapses that receive target input
spikes more often accumulate higher and higher weights while
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Fig. 8. Mean normalized synaptic weights as a function of noise spike rate
showing the synaptic weights of a three synapse neuron encoding the relative
level of input SNR such that the noisier afferents receive a lower weighting than
less noisy afferents. Where and is the noise spike generation
rate at the th input. The neuron was receiving a random spatio-temporal target
pattern corrupted with varying level of Poisson noise for each of the three input
channels. In all panels the Poisson noise rate across the first two channels,
and , was kept constant while was swept from to
and the average steady state value of the synaptic weights, , and are
plotted.

synapses with greater noise spikes have their weights pushed
down. Over time the forces pushing a synaptic weight up (post-
synaptic spikes following presynaptic spikes), and down (presy-
naptic noise spikes without a postsynaptic output spike) come
into balance with each other and the weight normalization pro-
duced by the neuron’s shift operations. If the Poisson processes
generating the noise spikes is homogeneous, i.e. constant over
time, then the synaptic weights converge to a steady state value
which encodes (and compensates for) the relative signal to noise
ratio of each afferent as shown in Fig. 8.
To demonstrate how the synaptic weights of a neuron evolve

to their steady state over time, a sixteen input neuron with half
its afferents corrupted with noise is shown in Fig. 9. Here, the
neuron’s input and kernel signals have been removed to more
clearly show the relative synaptic weight encoding over time.
Additionally the plot shows the neuron’s membrane potential

leveling off at a low steady state value with lower noise
and more consistent output spikes .

B. Recognition Performance of the Synaptic SNR Encoding
Neuron on Noise Corrupted Data
To quantify the recognition performance of the neuron under

various noise regimes, the recognition error of the synaptic
weight adapting neuron was measured against a neuron without
synaptic weigh adaptation. Both neurons were presented with
a random sequence one thousand patterns populated by two
random spatio-temporal patterns. For each test some of the input
channels were noise corrupted at varying levels as indicated
in Fig. 9. The neurons were given one hundred presentations
of this noisy randomized data stream within which to perform
unsupervised learning of one of the two random patterns
after which the pattern for which the neuron spiked most was

Fig. 9. Time series plot showing the evolution of synaptic weights of a
sixteen input neuron from an initial equal value their steady state. Half the
inputs, have a noise spike rate , while the
other half are noise free . The equally sized rectangles indicate the
equal normalized dynamic range of the synaptic weights while the sixteen
indexed plots show the weight of each synapse . The noise free synapses,

are all nearly equal and at the top of the normalized dynamic range.
The weight of the noisy synapses fall to approximately half that of
the noise free synapses where they remain in a steady state in response to the
noise environment. By lowering the synaptic weight of the noisy afferents the
neuron reduces their contribution to the somatic membrane potential making
the later a less noisy and thus more useful signal during recognition.

designated as its target pattern. In the following nine hundred
presentations the error in recognition was measured, defined as
the number of missed target patterns plus false positive output
spikes divided by the total number of target presentations.
Fig. 10 demonstrates the effect of the SNR encoding synapse,
where over a wide range of noise environments the neuron
effectively removes all corrupting input noise and delivers near
perfect unsupervised learning and recognition performance.
An interesting feature of the neuron is the initial increase in
error at the low noise level for the weight adapting neuron,
where a minimum noise threshold must be reached to trigger
the weight adaptation system. For these tests the
ratio was deliberately chosen to clearly illustrate this behavior.
This initial rise can be brought down by choosing a larger
term making the neuron more aggressive in terms of shutting
down noisy afferents.

C. Implementation in FPGA

To evaluate the hardware requirements of the proposed com-
bined SKAN-STDP system. The system was implemented in
an Altera Cyclone-V GX FPGA, a low-end FPGA containing
77,000 programmable logic elements (LEs) in Verilog hardware
description language. There were no approximations used in the
FPGA implementation as the ideal neuron model is determin-
istic and was designed using unsigned integer operation. Ac-
cordingly all signals in the FPGA and software implementations
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Fig. 10. Enhanced recognition performance via synaptic signal to noise ratio
encoding. (top) Recognition error as a function of increasing noise in a kernel
adapting neuron with static synaptic weights. The four plots demonstrate
increasing recognition error rate both as the number of noisy channels increase
and as the SNR per noisy channel deteriorates. Note that as long as the
noise corrupted channels are few in number the static SKAN can provide a
moderate level of unsupervised recognition performance. (bottom) The same
noise regime being applied to the same neuron this time with the dynamically
adaptive synaptic weights (note the change in scale for the vertical axis).
After perfect performance in the noiseless environments the error rates raise
rapidly ( –1:0.25). The reason for this initial rise in error is that
the relative level of noise is simply too low to trigger the neuron’s weight
adaptation system such that the recognition profile is almost the same as for the
static weighted neuron. As the noise level increases the neuron’s SNR encoding
system switches off the noisy channels and the recognition performance returns
to near perfect. At very high noise levels , the error rate begins
to rise again, this time because the neuron’s learning of its “target pattern”
during the unsupervised learning period begins to deteriorate.

were determined to be identical. Figures in this work were gen-
erated using software simulations of the model which was iden-
tical to that realized in hardware. The model’s synaptic and so-
matic parameters were implemented using 12-bit and 20-bit un-
signed integers respectively which is at the high end of synaptic
signal precision [4]. The hardware usage of the two proposed
systems is presented in Table I.
For the static weighted SKAN system additional synapses re-

quire 24 single bit registers and approximately 50 ALMs each.
For the combined SKAN-STDP system additional synapses re-
quire 40 single bit registers and approximately 150 ALMs each.
To provide a comparison to the resource usage of the 12-bit
SKAN and SKAN-STDP synapses, a single 12-bit unsigned
multiplier and its input registers were synthesized on the same
device. The resource usage of the multiplier consisted of 24

TABLE I
ALTERA CYCLONE V FPGA RESOURCE USAGE FOR THE STATIC WEIGHT
SKAN AND DYNAMIC WEIGHT SKAN MODELS, WITH VARYING NUMBER

OF SYNAPSES

An Adaptive Logic Module (ALM) is equivalent to 2.65 logic elements.

single bit registers and 65 ALMs.While utilizing approximately
twice the hardware resources of a single multiplier of the same
precision, the SKAN-STDP synapse is capable of learning an
arbitrary spike delay, generating a membrane potential at the
soma, encoding its input signal to noise ratio in its synaptic
weight and normalizing the dynamic range of its signals.

D. Example Application: Unsupervised Feature Learning
Using a Camera With Noise Corrupted Pixels

Cameras can often suffer from noisy pixels and experimental
or neuromorphic cameras are especially prone to this problem.
Cameras such as the event based DVS camera [23] can suffer
from faulty pixels which generate noisy streams of pulses where
there should be no activation and this can have a detrimental
effect on upstream recognition systems. Such faults can require
on-going examination of the camera by an expert user in order to
detect and remove such noise corrupted pixels. Here a synaptic
SNR encoding neuron is particularly useful in being able to si-
multaneously perform both the noise removal and the online un-
supervised feature learning task.
To demonstrate the concurrent learning of common features

in a sequence of spatio-temporal patterns and block noisy inputs,
the neuron was presented with a subset of the zero images in
the MNIST handwritten digit dataset which is commonly used
for training image processing systems [24]. The pixels in the
dataset images were directly mapped to the synaptic inputs of
the neuron. However since the neuron receives spikes as inputs,
the pixel values needed to be converted to spikes. The simplest
approach, which was used here, involved mapping intensity to
spike latency, with the brightest pixels arriving first and the
darkest arriving last. This transformation was performed by a
simple one to one mapping, however, neuromorphic approaches
such as use of distributed integrate and fire neurons can also be
used to convert real value signals to spike times [25].
To simulate the faulty camera a group of pixel in the central

region of the image were corrupted with random levels of noise
as shown in Fig. 11(a). Here the design

choice regarding zero weights referred to in Section III-B was
implemented, where once a synaptic weight reached zero value,
the synapse, and therefore the pixel, was disabled. This resulted
in a system where the noise corrupted pixels were all disabled
after at most 189 training images as shown in Fig. 11(d), leaving
only the noise free channels for the kernels to train on and gen-
erating the receptive field of the neuron shown in Fig. 11(b).
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Fig. 11. Unsupervised learning of common features concurrent with SNR
encoding synaptic weights on noise corrupted spatio-temporal patterns
encoding handwritten zero digits from the MNIST dataset using a single
neuron. (a) The input space with corrupted pixels highlighted. (b) The final
receptive field of the neuron after exposure to the MNIST zeros. Pixels with
higher probability of being dark are more likely to generate late spikes which
a correctly trained neuron should encode in the form of narrow kernels or
high kernel slopes . Conversely, pixels more likely to be bright should
be encoded by lower kernel slopes, as is seen. As a result, the further an
input image is from this ‘model’ of a zero, the weaker the response of the
neuron to the image. (c) The final synaptic weights of the neuron showing
the disabled pixels. (d) The evolution of the synaptic weights over time. The
neuron correctly weighted all the equally noiseless pixels equally high while
weakening the weight of the noisy channels until they reached their minimum
value at which point they are disabled.

Note that the aggressiveness of pixel removal system can be
controlled via the ratio.
The disabled synapses shown in Fig. 11 can potentially be

reused, making SNR encoding synapses not only useful in terms
of enhancing the performance of downstream signal processing
systems as demonstrated in Fig. 10, but in reconfigurable sys-
tems could also enable the potential reallocation of hardware
resources to other tasks. This would allow more efficient hard-
ware use in the context of the noise present in the sensors and in
the environment. Future work will focus on the use of the neuron
model as noise robust hardware implemented spike based unsu-
pervised feature extractor in an unsupervised-supervised recog-
nition system.

V. CONCLUSION
An extended model of the synapto-dendritic kernel adapting

neuron, with a simplified STDP synaptic weight update rule
was presented and shown to perform concurrent unsupervised
learning of commonly presented spatio-temporal patterns and
synaptic encoding of afferent signal to noise ratio. In addi-
tion a novel shift based digital normalization algorithm was
introduced which allowed synaptic homeostasis or weight
normalization without the need for a fixed-point division op-
eration. While the neuron model is a simplified abstraction
of highly complex synaptic, dendritic and somatic processes,

its adaptive kernels permit the efficient functional modeling
of neurons learning of spatio-temporal spike patterns in the
presence of varying levels of noise. The implementation of
the neuron model in digital hardware shows that neuron’s
synapses have hardware usage requirements comparable to a
single digital multiplier while being able to generate complex
computationally useful behaviors. The signal to noise encoding
synapses were shown to compensate for afferents corrupted
with noise spikes resulting in improved learning and recogni-
tion performance across a range of noise environments with
relevance to neuromorphic engineering applications such as
bio-inspired visual processors.
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