
Scientific Graphing Tool Using Touch LCD

A MINI-PROJECT SUBMITTED IN PARTIAL FULFILMENT
FOR THE COURSE OF

E3-257 Embedded Systems Design

BY

UJJWAL CHAUDHARY, M. TECH. ESE 2023-25
ANANYA PAL, M. TECH. ESE 2023-25

SUBMITTED TO

PROF. HARESH DAGALE

DEPARTMENT OF ELECTRONIC SYSTEMS ENGINEERING

INDIAN INSTITUTE OF SCIENCE, BANGALORE

MAY 2024

COPYRIGHT © 2024 IISC

ALL RIGHTS RESERVED

Synopsis

The report presents the development of a comprehensive graphing tool with advanced mathe-
matical functions. The tool is capable of tracing curves, computing derivatives and integrals,
finding odd roots, calculating the area under curves, and performing zoom and shift operations.

All functions of the tool are implemented in a header file named evaluate.h, which pro-
vides a convenient and easily accessible interface for users. This allows anyone to utilize the
functionalities of the tool by simply including the evaluate.h file in their code.

Moreover, the tool is designed to be customizable, with certain macros that can be easily
changed to suit specific requirements. This flexibility allows users to adapt the tool to their
needs and preferences, making it a versatile tool for mathematical analysis.

iii

iv

Acknowledgements

We want to express our sincere gratitude to the Embedded Systems lab at the Department
of Electronic Systems Engineering (DESE), Indian Institute of Science (IISc), Bangalore for
providing us with the necessary components, including the Tiva board and Touch LCD Booster
Pack, which were instrumental in the development of our graphing tool.

We are also thankful to Prof. Haresh Dagale and the teaching assistants of the course E3-257
Embedded Systems Design for their lectures, assignments, and guidance, which helped us build
a strong foundation of concepts crucial for our project’s successful completion.

Lastly, we would like to thank our friends and all those who supported and encouraged us
throughout this project.

v

Contents

Table of Contents vii

List of Figures ix

1 Application and Usage 1

1.1 Introduction . 1

1.2 Features . 1

1.2.1 Plotting graph . 2

1.2.2 Derivative tool . 3

1.2.3 Integral tool . 3

1.2.4 Zoom in and out . 3

1.2.5 Shift left and right . 4

1.2.6 Area under the curve . 5

1.2.7 Zeros of the function . 5

2 Working 9

2.1 Hardware . 9

2.2 Code Tree . 10

2.3 Evaluating the expression . 12

2.4 Plotting graph . 13

2.4.1 Calculation of points . 13

2.4.2 Mapping to LCD screen . 14

2.5 Derivative tool . 15

2.6 Integral tool . 15

2.7 Area Under the curve . 17

2.8 Zeros of the function . 17

vii

CONTENTS viii

2.9 Zoom in and out . 18

2.10 Left and right shift . 19

3 Concluding remarks 21

3.1 User instructions . 21

3.2 Suggestions for next gen . 22

A Data 23

B Program Listing 27

C Contributions 29

Bibliography 31

List of Figures

1.1 Graphing tool main panel. 2

1.2 Graphing tool graphing screen 1/2. 2

1.3 Derivative curve of f (x) plotted by graphing tool. 3

1.4 F(x) curve plotted by graphing tool. 4

1.5 (a) Zoom-in plot of f (x). (b) Zoom-out plot of f (x). 4

1.6 (a) Right shift plot of f (x). (b) Left shift plot of f (x). 5

1.7 Graphing tool graphing screen 2/2. 6

1.8 Area under the curve calculated by the graphing tool. 6

1.9 Odd roots of f (x) (a) highlighted by graphing tool with value and (b) without
value. 7

2.1 TIVA C series launchpad board . 10

2.2 Kentec QVGA touch screen . 10

2.3 Code hierarchy tree . 11

ix

Chapter 1

Application and Usage

1.1 Introduction

In today’s digital age, integrating technology into educational tools has become important, par-

ticularly in mathematics education. Graphing tools have long been a staple in math classrooms,

aiding students in visualizing complex functions and equations. However, with the advent of

touchscreen technology, there lies an opportunity to revolutionize the traditional graphing tool,

making it more intuitive, interactive, and accessible.

The motivation behind building a graphing tool on a touchscreen module as an embedded

project stems from enhancing user experience, i.e., touchscreens offering a more intuitive in-

terface than traditional button-based input systems. We have built a similar utility hardware

tool like the Desmos graphing tool website [1]. Moreover, integrating the graphing tool into a

touchscreen module makes the device more portable and versatile.

1.2 Features

Several features are available in the graphing tool. We have implemented seven such fea-

tures. As shown in figure 1.1, the tool’s main panel enables the user to enter the mathemat-

ical expression he wants to visualize. For the sake of explanation of the tool, we will take

f (x) = log(x)+ sin(x)∗ cos(x)−0.35.

After writing down the expression, the user must tap on the ”Plot” option. This will result in

the screen shown in figure 1.2.

1

1.2. Features 2

Figure 1.1: Graphing tool main panel.

1.2.1 Plotting graph

Function f (x) is plotted by the tool as shown in figure 1.2. The value of log(x) is not defined

for negative values of x, thus, we see no plot for the same. By default, the function the user

enters is plotted within the range of -10 to 10. Users can change this default range by changing

the definition of global variables X MIN (starting value of x) and X MAX (last value of

x).

Figure 1.2: Graphing tool graphing screen 1/2.

3 1.2. Features

1.2.2 Derivative tool

To calculate the derivative curve of f (x), the user needs to tap on the ”f’(x)” option, which is

given at the bottom of the screen as shown in figure 1.2. This will result in the plotting of the

first derivative of f (x), which can be seen in the figure 1.3.

Figure 1.3: Derivative curve of f (x) plotted by graphing tool.

1.2.3 Integral tool

To calculate the integral curve of f (x), the user needs to tap on the ”F(x)” option, which is

given at the bottom of the screen as shown in figure 1.2. This will result in plotting the curve

defined by equation 1.1, which can be seen in figure 1.4.

F(x) =
∫ x

X MIN
f (p)d p (1.1)

1.2.4 Zoom in and out

To zoom into the curve, the user needs to tap on the ”+” option, which is given at the bottom

of the screen as shown in figure 1.2. This will result in decrement of both X MIN and

X MAX by factor of ZOOM FACTOR, thereafter, the graph is plotted as shown in figure 1.5(a).

1.2. Features 4

Figure 1.4: F(x) curve plotted by graphing tool.

To zoom out of the curve, the user needs to tap on the ”-” option, which is given at the bottom of

the screen as shown in figure 1.2. This will result in increment of both X MIN and X MAX

by factor of ZOOM FACTOR, thereafter, the graph is plotted as shown in figure 1.5(b).

The default value of macro ZOOM FACTOR is 2. This can be changed in evaluate.h header

file.

Figure 1.5: (a) Zoom-in plot of f (x). (b) Zoom-out plot of f (x).

1.2.5 Shift left and right

To right-shift the curve, the user needs to tap on the ”R” option, which is given at the bottom

of the screen as shown in figure 1.2. This will result in decrement of both X MIN and

5 1.2. Features

X MAX by of (X MAX - X MIN)/SHIFT FACTOR, thereafter, the graph is plotted

as shown in figure 1.6(a).

To zoom out of the curve, the user needs to tap on the ”-” option, which is given at the bottom

of the screen as shown in figure 1.2. This will result in increment of both X MIN and

X MAX by of (X MAX - X MIN)/SHIFT FACTOR, thereafter, the graph is plotted

as shown in figure 1.6(b).

The default value of macro SHIFT FACTOR is 10. This can be changed in evaluate.h

header file.

Figure 1.6: (a) Right shift plot of f (x). (b) Left shift plot of f (x).

1.2.6 Area under the curve

To calculate the area under the curve, which is defined by the equation 1.2. Users need to go to

the second section of the panel by tapping on the ”1/2” button of the screen as shown in figure

1.2. This will result in the screen shown in figure 1.7, thereafter, the user needs to tap on the

”A” button which will display the area under the curve value as shown in figure 1.8

A =
∫ X MAX

X MIN
f (x)dx (1.2)

1.2.7 Zeros of the function

The graphing tool can calculate the odd roots of the curve within the given range of the curve.

To calculate the roots of the curve. Users need to go to the second section of the panel by

1.2. Features 6

Figure 1.7: Graphing tool graphing screen 2/2.

Figure 1.8: Area under the curve calculated by the graphing tool.

tapping on the ”1/2” button of the screen as shown in figure 1.2. This will result in the screen

shown in figure 1.7; thereafter, the user needs to tap on the ”Roots” button, which will highlight

the roots of the curve with the values as shown in figure 1.9(a). To hide the values of the roots,

the user can tap on the ”Hide” button, which will remove the values of the highlighted roots as

shown in the figure 1.9(b).

The maximum number of roots the graphing tool can find is limited by macro MAX ZEROS,

whose default value is 10. When there are more than 10 roots, the tool will only calculate the

7 1.2. Features

Figure 1.9: Odd roots of f (x) (a) highlighted by graphing tool with value and (b) without value.

first 10 roots. The value of MAX ZEROS can be changed in evaluate.h header file.

1.2. Features 8

Chapter 2

Working

2.1 Hardware

We are using here the BOOSTXL-K350QVG-S1 Kentec QVGA module [2] which is capable

of driving a 320 x 240 pixel TFT LCD panel.

Integrating the BOOSTXL-K350QVG-S1 Kentec QVGA with TIVA microcontroller involves:

1. Configuring the interface (8-bit or 16-bit) depending on the host controller capabilities.

2. Initializing the SSD2119 controller to set up the screen resolution, color depth, and other

features like scrolling and partial display modes.

3. Require to remove the resistor R9 and R10 on TIVA microcontroller and then connecting

to through the pins in proper alignment pin configurations <J2,J4> and <J1,J3>.

The following are the resource requirements to build the system:

• BOOSTXL-K350QVG-S1 Kentec QVGA touch screen graphics display.

• TIVA C series microcontroller (TM4C123GH6PM)

• Code composer studio IDE.

• GCC

9

2.2. Code Tree 10

Figure 2.1: TIVA C series launchpad board

Figure 2.2: Kentec QVGA touch screen

2.2 Code Tree

The project is organized into directories and files with specific roles as outlined below:

• Initials.h - Contains initial setup functions for the tool.

• Panels.h - Declarations related to different touchscreen panels.

• Panel 6.h - Interface functions for the mathematical expression input panel.

• Panel 6 2.h - Interface for the plotting panel.

• Calculator.c - The main entry point of the tool program.

• OnButtonPress 6.c - Handles button presses in the expression input interface.

• OnButtonPress 6 2.c - Manages the plotting interface functionality.

• ButtonPress Plot.c - Implements zooming, shifting, differentiation, integration,

and other plotting features.

11 2.2. Code Tree

Figure 2.3: Code hierarchy tree

• process calculation.c - Processes and evaluates mathematical expressions.

• evaluate.c - Converts expressions to pixel coordinate arrays for plotting.

• startup css - Startup file.

• drivers/ - Kentec320x240x16 ssd2119 spi.c and touch.c driver files to run

touchscreen module-specific libraries.

2.3. Evaluating the expression 12

2.3 Evaluating the expression

The eval() function which is part of evaluate.h is used to evaluate a mathematical ex-

pression given as a string expr. It supports basic arithmetic operations (+, −, ∗, /), trigono-

metric functions (sin, cos, tan), logarithmic function (log), and modulus (mod) operation.

The function evaluates the expression and returns the result as a float.

The function works on the principle of the shunting-yard algorithm, which is used to parse

mathematical expressions specified in infix notation into postfix notation (also known as Re-

verse Polish Notation or RPN)[3]. Once the expression is in postfix notation, it is easier to

evaluate using a stack.

The algorithm used in this function can be broken down into the following steps:

• Initialize two stacks, one for operands (valStack) and one for operators (opStack).

• Iterate through each character in the input expression.

• If the character is a space, skip it.

• If the character is a digit or a decimal point followed by a digit, extract the number and

push it onto the operand stack (valStack).

• If the character is alphabetic (i.e., the start of a function name), check for supported

functions (sin, cos, tan, log, mod) and push their corresponding tokens onto the

operator stack (opStack).

• If the character is an opening parenthesis, push it onto the operator stack (opStack).

• If the character is a closing parenthesis, pop operators and operands from the stacks and

perform the corresponding operation until an opening parenthesis is encountered. Push

the result onto the operand stack (valStack).

• If the character is an operator (+, −, ∗, /, etc.), pop operators from the stack as long as

they have higher or equal precedence compared to the current operator, and then push the

current operator onto the operator stack (opStack).

• After processing all characters, apply any remaining operators on the stacks to the operands

to obtain the final result.

Overall, the function uses stacks to manage operators and operands, applying them in the cor-

rect order based on their precedence and associativity to evaluate the expression.

13 2.4. Plotting graph

2.4 Plotting graph

Plotting a graph on a touch LCD involves two steps. First, the calculation of the points in the

curve. Second, they are mapped to the correct location on the LCD screen.

2.4.1 Calculation of points

The XY array is the global variable that will store the points of a curve. It is calculated in

the following steps:

1. x vals(): This function generates the x values for the expression. It calculates the

step size between x values based on the minimum and maximum x values (X MIN

and X MAX) and the total number of points (N). It then iterates over the XY array

and fills in the x values.

2. bracket adder(): This function adds brackets to the expression to ensure the cor-

rect order of operations. It handles cases where the expression contains trigonometric

functions (sin, cos, tan), logarithmic function (log), and modulus (mod) operation.

It also handles negative numbers in parentheses by replacing (- with (0-.

3. val replacer(float val): This function replaces the variable x in the expres-

sion with the given value val. It also replaces the constants pi and e with their respec-

tive values (3.14159265 and 2.71828182845).

4. y vals(): This function calculates the y values corresponding to the x values. It

first calls bracket adder() to add brackets to the expression. Then, it iterates over

the XY array, replacing the variable x with the current x value and evaluating the

expression using the eval() function to calculate the corresponding y value.

5. xy vals(): This function is a helper function that calls x vals() and y vals() to

generate both x and y values for the expression.

Overall, the XY array is calculated by first generating the x values, then calculating the cor-

responding y values for each x value by evaluating the expression with the x variable replaced

by the current x value.

The resolution of the curve depends on the value of the macro N. Default value of N is 800,

which can be changed in evaluate.h header file.

2.4. Plotting graph 14

2.4.2 Mapping to LCD screen

The function map xy() is used to map a set of XY coordinates XY to a new set of coor-

dinates MAPPED XY based on certain scaling and offset values. The function operates as

follows:

1. Calculate the range of X and Y values:

• x range is calculated as the difference between the maximum and minimum X

values (X MAX and X MIN).

• y range is calculated as the difference between the maximum and minimum Y

values (Y MAX and Y MIN).

2. Calculate the scaling factors:

• x scale is calculated as the difference between the maximum and minimum X

values in the mapped coordinates (MP X2 and MP X1), divided by the range

of X values.

• y scale is calculated as the difference between the maximum and minimum Y

values in the mapped coordinates (MP Y2 and MP Y1), divided by the range

of Y values.

3. Calculate the offset values:

• x offset is calculated as the difference between the minimum X value in the

mapped coordinates (MP X1) and the product of x scale and the minimum X

value from the original coordinates (X MIN).

• y offset is calculated as the difference between the minimum Y value in the

mapped coordinates (MP Y1) and the product of y scale and the minimum Y

value from the original coordinates (Y MIN).

4. Iterate over each pair of X and Y values in the input array XY :

• Calculate the mapped X value by multiplying the X value by x scale and adding

x offset.

• Calculate the mapped Y value by multiplying the Y value by y scale and adding

y offset.

• Store the mapped X and Y values in the corresponding arrays in MAPPED XY .

15 2.5. Derivative tool

In summary, based on the specified mapping ranges and offsets, the map xy() function per-

forms a linear mapping of XY coordinates from one range to another.

2.5 Derivative tool

The derivative() function (which is part of evaluate.h) computes an approximation

of the derivative of a set of XY coordinates stored in the array XY , and stores the results

in the array DY DX . Additionally, it calculates the minimum and maximum values of the

derivative and stores them in Y MIN DY DX and Y MAX DY DX respectively.

The function operates as follows:

1. Iterate over XY coordinates: The function iterates over each pair of XY coordinates in the

input array XY , except for the last pair (N −1), as the derivative calculation requires

a subsequent point.

2. Calculate midpoint and derivative approximation: For each pair of XY coordinates, it

calculates:

• The midpoint X value: (XY [0][i + 1]+ XY [0][i])/2

• The derivative approximation:

(XY [1][i + 1]− XY [1][i])/(XY [0][i + 1]− XY [0][i])

3. Calculate the minimum and maximum derivative: After the loop, the function calcu-

lates the minimum and maximum values of the derivative in the DY DX [1] ar-

ray (which contains the derivative values) and stores them in Y MIN DY DX and

Y MAX DY DX respectively, using the min() and max() functions.

In summary, the derivative() function computes an approximation of the derivative of

a set of XY coordinates and calculates the minimum and maximum values of the derivative.

Thereafter, DY DX can be mapped to LCD screen using map dydx() function.

2.6 Integral tool

The integral() (Which is part of evaluate.h) function computes an approximation of

the integral of a set of XY coordinates stored in the array XY , and stores the results in the

2.6. Integral tool 16

array INTEGRAL XY . Additionally, it calculates the minimum and maximum values of the

integral and stores them in Y MIN INTEGRAL and Y MAX INTEGRAL respectively.

The function operates as follows:

1. Initialize last valid value: It initializes a variable last valid value to 0, which will

be used to store the last valid integral value.

2. Iterate over XY coordinates: The function iterates over each pair of XY coordinates in

the input array XY , except for the last pair (N−1), as the integral calculation requires

a subsequent point.

3. Check for invalid values: For each pair of XY coordinates, it checks if either of the Y

values is infinite or NaN (not a number). If so, it sets the integral value to NaN and

continues to the next iteration.

4. Calculate midpoint and integral approximation: For each pair of XY coordinates with

valid values, it calculates:

• The midpoint X value: (XY [0][i + 1]+ XY [0][i])/2

• The integral approximation using the trapezoidal rule: last valid value+

(XY [1][i]+ XY [1][i + 1])×(XY [0][i + 1]− XY [0][i])/2

The calculated integral value is stored in INTEGRAL XY [1][i], and last valid value

is updated to this value.

5. Calculate minimum and maximum integral: After the loop, the function calculates the

minimum and maximum values of the integral in the INTEGRAL XY [1] array (which

contains the integral values) and stores them in Y MIN INTEGRAL and Y MAX INTEGRAL

respectively, using the min() and max() functions.

Thus, the integral() function computes an approximation of the integral of a set of XY

coordinates using the trapezoidal rule, handling invalid values, and calculates the minimum

and maximum values of the integral. Thereafter, INTEGRAL XY can be mapped to LCD

screen using map integral() function.

17 2.7. Area Under the curve

2.7 Area Under the curve

The area under curve() (Which is part of evaluate.h) function computes the area

under a curve defined by a set of XY coordinates stored in the array XY , and stores the

result in the variable AREA .

The function operates as follows:

1. Initialize area and last valid value: It initializes the area AREA to 0 and a variable

last valid value to 0, which will be used to store the last valid area value.

2. Iterate over XY coordinates: The function iterates over each pair of XY coordinates in

the input array XY , except for the last pair (N −1), as the area calculation requires a

subsequent point.

3. Check for invalid values: For each pair of XY coordinates, it checks if either of the Y

values is infinite or NaN (not a number). If so, it skips the calculation for that pair and

continues to the next iteration.

4. Calculate area approximation: For each pair of XY coordinates with valid values, it

calculates the area under the curve using the trapezoidal rule:

AREA = last valid value + (XY [1][i] + XY [1][i + 1]) *

(XY [0][i + 1] - XY [0][i]) / 2

The calculated area value is stored in AREA , and last valid value is updated to

this value.

In summary, the area under curve() function computes an approximation of the area

under a curve defined by a set of XY coordinates using the trapezoidal rule, handling invalid

values.

2.8 Zeros of the function

To calculate the odd roots of a curve within a given range, the following functions (Which are

part of evaluate.h) are used:

1. bisection points(): This function calculates the bisection points of a function rep-

resented by XY coordinates stored in the array XY . It populates the array BISECTION

2.9. Zoom in and out 18

with the bisection points, where each bisection point consists of an X and Y coordinate. Bisec-

tion points are the points where the Y values of two consecutive XY coordinates have opposite

signs, indicating a change in sign of the function and potentially the presence of a root within

that range.

2. bisection method(float point1[1][2], float point2[1][2]): This func-

tion calculates the root of the function using the bisection method, given two bisection points.

It first checks if the two points have opposite signs (indicating a potential root between them).

If they do, it iteratively refines the root approximation using the bisection method until the

desired accuracy is achieved or the maximum number of iterations is reached. It returns the

calculated root and NAN if the root is not found.

3. zeros of function(): This function finds the zeros of the function within the given

range. It first calls bisection points() to find the bisection points. Then, it initial-

izes two stacks to store the zeros (ZEROS) and the mapped zeros (MAPPED ZEROS).

It iterates over the bisection points, and for each pair of consecutive bisection points, it calls

bisection method() to calculate the root. If a root is found, it pushes it onto the ZEROS

stack.

Overall, these functions work together to find the odd roots of a curve within a given range by

first identifying the bisection points and then using the bisection method to calculate the roots.

2.9 Zoom in and out

The following functions (Which is part of evaluate.h) are used to implement zoom in and

out functionality:-

zoom in(): This function zooms in on the curve by reducing the range of X values dis-

played on the graph. It divides the current minimum and maximum X values (X MIN and

X MAX) by the zoom factor (ZOOM FACTOR). After adjusting the X range, it recalculates

the XY values, maps the XY values to the display, computes the derivative, maps the derivative,

calculates the integral, and finally maps the integral values.

zoom out(): This function zooms out on the curve by increasing the range of X values

displayed on the graph. It multiplies the current minimum and maximum X values (X MIN

and X MAX) by the zoom factor (ZOOM FACTOR). Similar to zoom in(), it recalculates

the XY values, maps the XY values to the display, computes the derivative, maps the derivative,

calculates the integral, and finally maps the integral values.

19 2.10. Left and right shift

2.10 Left and right shift

The following functions (Which is part of evaluate.h) are used to implement shifting right

and left functionality:-

shift right(): This function shifts the curve to the right by increasing the range of X val-

ues displayed on the graph. It calculates the current range of X values (X MAX - X MIN)

and then increases both the minimum and maximum X values by a fraction of the range

(x range / SHIFT FACTOR). After adjusting the X range, it recalculates the XY values,

maps the XY values to the display, computes the derivative, maps the derivative, calculates the

integral, and finally maps the integral values.

shift left(): This function shifts the curve to the left by decreasing the range of X values

displayed on the graph. It calculates the current range of X values (X MAX - X MIN) and

then decreases both the minimum and maximum X values by a fraction of the range (x range

/ SHIFT FACTOR). Similar to shift right(), it then recalculates the XY values, maps

the XY values to the display, computes the derivative, maps the derivative, calculates the inte-

gral, and finally maps the integral values.

2.10. Left and right shift 20

Chapter 3

Concluding remarks

3.1 User instructions

The Scientific Graphing tool using Touch LCD is a revolutionary tool that allows users to

visualize complex mathematical functions easily. It is designed to be intuitive, interactive, and

portable, making it ideal for educational and professional use.

The tool offers several features:

• Plotting Graphs: Users can enter mathematical expressions and plot graphs with a simple

tap on the ”Plot” option.

• Derivative tool: Calculate the derivative curve of a function by tapping on the ”f’(x)”

option.

• Integral tool: Calculate the integral curve of a function by tapping on the ”F(x)” option.

• Zoom In and Out: Zoom into or out of the graph by tapping on the ”+” or ”-” option,

respectively.

• Shift Left and Right: Shift the graph left or right by tapping on the ”R” or ”L” option,

respectively.

• Area Under the Curve: Calculate the area under the curve of a function by tapping on the

”A” option.

• Zeros of the Function: Calculate the odd roots of a function within a given range by

tapping on the ”Roots” option.

21

3.2. Suggestions for next gen 22

To use the tool, follow these steps:

1. Enter a mathematical expression in the main panel.

2. Tap on the ”Plot” option to plot the graph.

3. Explore features like derivative, integral, zoom, shift, area, and zeros.

Users can customize the default range of the graph and other parameters by editing the macros

in the header files.

3.2 Suggestions for next gen

The development of the tool has significantly enhanced its functionality, providing users with

powerful tools for mathematical analysis. However, to further improve its utility for future

generations, several key enhancements can be implemented:

1. Enable tool to find even roots: Implement algorithms and functions that allow the tool

to calculate even roots of functions accurately. This enhancement would expand the

tool’s capability to handle a wider range of mathematical operations and make it more

versatile.

2. Enable tool to handle vertical asymptotes: Integrate features that enable the tool to

identify and handle vertical asymptotes in functions. This improvement would enhance

the tool’s ability to analyze and graph functions with vertical asymptotes, providing more

comprehensive results for users.

In conclusion, implementing these improvements would significantly enhance the tool’s func-

tionality and make it a more powerful tool for mathematical analysis for future generations.

Appendix A

Data

Tables A.1, A.2, A.4, A.5, and A.6 give the information of all the macros, global variables, and

functions in evaluate.h header file.

Table A.1: Macros in evaluate.h with Default Values
Macro Usage Read/Write Default Value

MAX STACK SIZE Maximum size of expression

stack

Read/write 100

PI Value of pi Read 3.14159265

E Value of e Read 2.718281828459045

EPSILON Value of epsilon - Bisection

method

Read/write 0.000001

MAX ITERATIONS Maximum iterations for bi-

section method

Read/write 70

MAX ZEROS Maximum number of zeros Read/write 10

N Maximum number of points Read/write 800

MIN Y SPACE Minimum y space Read/write 1

EXP LEN Maximum length of expres-

sion

Read/write 150

ZOOM FACTOR Zoom factor Read/write 2

SHIFT FACTOR Shift factor Read/write 10

mod(x) Absolute value of x Read -

23

24

Table A.2: Global Variables in evaluate.h
Global Variable Usage Read/Write

EXPR Expression to be evaluated f(x) Write

EXPR VAL Expression to be evaluated f(number) Read

BRACKET FLAG Flag to check if brackets are added Read

X MIN Minimum x value Write

X MAX Maximum x value Write

Y MIN Minimum y value Read

Y MAX Maximum y value Read

Y MIN DY DX Minimum y value of dy/dx Read

Y MAX DY DX Maximum y value of dy/dx Read

Y MIN INTEGRAL Minimum y value of integral of y Read

Y MAX INTEGRAL Maximum y value of integral of y Read

MP X1 x1 value for mapping Write

MP Y1 y1 value for mapping Write

MP X2 x2 value for mapping Write

MP Y2 y2 value for mapping Write

XY x values Read

MAPPED XY x values mapped to screen coordinates Read

DY DX Derivative values Read

MAPPED DY DX Mapped derivative values Read

INTEGRAL XY Integral values Read

MAPPED INTEGRAL XY Mapped integral values Read

AREA Area under the curve Read

BISECTION Bisection points Read

ZEROS Zeros of the function Read

MAPPED ZEROS Mapped zeros of the function Read

Table A.3: Initialization Functions in evaluate.h
Function Description

initialize() Initialize global variables

25

Table A.4: Evaluation of Mathematical Expressions Functions in evaluate.h
Function Description

init(Stack* s) Initialize stack

push(Stack* s, float val) Push item onto stack

pop(Stack* s) Pop item from stack

peek(Stack* s) Peek at the top item of the

stack

isempty(Stack* s) Check if stack is empty

print stack(Stack* s) Print stack

precedence(char op) Operator precedence

applyOp(float a, float b, char op) Apply operator to operands

eval(const char* expr) Evaluate expression

Table A.5: Generation of X and Y Values Functions in evaluate.h
Function Description

bracket adder() Envelopes sin, cos, tan, log,

and mod in brackets

x vals() Generate x values

val replacer(float val) Replace variable with value

y vals() Generate y values corre-

sponding to x values

xy vals() Generate x and y values

26

Table A.6: Mathematical Operations Functions in evaluate.h
Function Description

derivative() Calculate the derivative of a

function

integral() Calculate the integral of a

function - Trapezoidal Rule

- Integration from X MIN

to x

area under curve() Calculate the AREA un-

der the curve of a function

bisection points() Calculate the bisection points

of a function

bisection method(float point1[1][2] Calculate the root using the

, float point2[1][2]) bisection method with given

points

zeros of function() Calculate the zeros of a func-

tion

map xy() Map x and y values to screen

coordinates

map dx dy() Map dy/dx values to screen

coordinates

map integral() Map integral y values to

screen coordinates

map zeros() Map zeros of the function to

screen coordinates

zoom in() Zoom in the graph

zoom out() Zoom out the graph

shift left() Shift the graph to the left

shift right() Shift the graph to the right

Appendix B

Program Listing

evaluate.h header file can be accessed from this GitHub link: https://bit.ly/evaluate-header

If one wishes to run the graphing calculator in their Tiva board directly, one can run the zip

folder in Code Composition Studio. This zip folder is available at this link: https://bit.ly/graphing-

calculator

27

28

Appendix C

Contributions

In the course of this project, a significant contribution was made through the development of

the evaluate.h header file. This header file encapsulates a comprehensive set of functions

for mathematical expression evaluation, graph plotting, and analysis. Some key contributions

and novelties introduced in evaluate.h include:

• Mathematical Expression Evaluation: The evaluate.h header provides functions

for evaluating mathematical expressions involving basic arithmetic operations, trigono-

metric functions, logarithmic functions, and more. It incorporates a stack-based approach

for expression evaluation, ensuring efficiency and accuracy.

• Graph Plotting and Analysis: evaluate.h includes functions for generating x and

y values, calculating derivatives, integrals, and areas under curves, and finding zeros of

functions. These functionalities enable the user to analyze and visualize mathematical

functions with ease.

• Modularity and Reusability: The design of evaluate.h emphasizes modularity and

reusability. Each function is designed to perform a specific task, allowing users to easily

integrate these functions into their projects for mathematical analysis and graph plotting.

• Potential Intellectual Property: The functionalities provided by evaluate.h, par-

ticularly the algorithms for expression evaluation and graph plotting, have the potential

for intellectual property protection. The innovative approaches used in these algorithms

may be considered novel and non-obvious.

• Future Research and Publications: The development of evaluate.h opens up av-

enues for future research and potential publications in conferences or journals. The algo-

29

30

rithms and methodologies used in evaluate.h can be further refined and extended to

address more complex mathematical problems.

Overall, the development of evaluate.h represents a significant contribution to the project,

providing a robust and versatile tool for mathematical expression evaluation and graph plot-

ting. Its potential for intellectual property and future research highlights its importance in the

project’s success.

Bibliography

[1] Desmos studion PBC. Graphing calculator.

[2] Texas Instruments. Tiva c series tm4c129x microcontrollers silicon revisions 6 and 7

(spmu300e), 2022. Rev. E.

[3] GeeksforGeeks. Convert infix expression to postfix expression.

31

