
Embedded Systems Design Project Report
Abhishek Milind Tambe

Instrumentation And Applied Physics
Indian Institute of Science, Bangalore

abhishekmt@iisc.ac.in

Munipalle Vara Sai Charan
Instrumentation And Applied Physics
Indian Institute of Science, Bangalore

charansaim@iisc.ac.in

Abstract—The objective of the project is to create
a simple Real Time Operating System (RTOS) for
the Cortex-M4 microprocessor by implementing a
task scheduler and Operating System APIs to make
ISR-OS interface. The system should be capable of
handling multiple tasks with varying priorities and
should switch the tasks as that of in RTOS by round-
robin algorithm according to their priorities, accom-
modating other system Interrupt Service Routines
(ISRs). The goal is to minimize the overhead on
processor with efficient system performance.

I. INTRODUCTION

A mini RTOS is designed to handle multiple
tasks with different priorities and system Interrupt
Service Routines (ISRs) by algorithms such as
round-robin algorithm. One important aspect of
an RTOS is its context switching, which allows
the system to save the current running task state
in stack and then switch to a higher-priority task
when it is available. Tasks running in RTOS system
will be appear as shown in fig 1. Task priorities
are used to determine the order in which tasks
are executed. The OS calls are implemented using
SVC call, PendSV and SysTick interrupts. The
SVC and PendSV interrupt is used to perform
context switching while the SysTick interrupt is
used to run the scheduler, ensuring that the highest
priority task is always executed first. The goal of
this mini RTOS is to minimize overhead on the
processor by efficient task scheduling.

A. Architecture

This section describes the architecture of this
project. The preemptive task scheduler discussed

Fig. 1. Tasks scheduled by preemptive scheduler

here is implemented in ARM Cortex-M microcon-
troller, specifically the TM4C123GH6PM. It uses
the SVC, PendSV exception handler to perform
context switching between tasks. When a context
switch is required, the current task’s context is
saved, and the context of the next task to be
executed is restored. The pendsv function should
trigger a PendSV exception and request a context
switch.
In addition to PendSv, It should consist of SysTick
exception handler to periodically select the next task
to be executed based on its priority. we need to
have a function for Systick Handler to update the
delay values of all waiting tasks and moves tasks
that have completed their delay to the ready state.
If necessary, it need to set up a context switch by
calling the pendsv function.
We need to set up a function to launch the Scheduler
to first initialize the scheduler by dummy values
stored in the stack and then once it is set up we need
to get the first task to be executed according to the
priority. The scheduler uses a simple round-robin
approach to break ties between tasks with the same



priority. If no task is ready to run, the scheduler is
set to run the current task only.

B. header file structure

The header file contains structures and functions
related for managing tasks. This uses to run the
tasks using a priority-based scheduling algorithm.
The various structures that were used in this file
are given below.

• Task State - This is used to define the state of
a task. It has two values - ready and block. These
values are used to represent the current state of a
task.
• TCBt - This is a structure which represents
a task control block (TCB). The TCB contains
information about a task such as its stack pointer,
priority, delay, task IDs and the address of the task
function. This information is used by the OS to
manage the task.
• PendSv setup - This is used to set up the
PendSV exception. This exception is used by the
OS to perform a context switch.
• PendSv Handler - This function is the exception
handler for the PendSV exception. It performs a
context switch by saving the current task’s context
and restoring the next task’s context that needs to
be executed.
• schedule - This function triggers the PendSv
exception, which is used for context switching.
• init systick timer - This function is to initialize
the systick timer by enabling the register. It is
used by the OS to keep track of time and perform
time-based operations.
• Systick Handler - This function is the exception
handler for the Systick timer interrupt. It is used
by the OS to keep track of time and perform
time-based operations.
• LaunchScheduler - This function launches the
scheduler, which is responsible for launching the
tasks according to their priority.
• create task - This function creates a new
task with the specified priority and task handler
function.
• delete task- This function deletes the task with
the specified priority and task handler.

• init sched stack - This function is used to store
the kernel related registers on stack.
•save psp value - This function saves the psp
value of the current task.
•get psp value - This function gets the psp value
of current task.
•update next task- This function updates the next
task that needs to be switched.
•switch sp psp- This function switches sp from
MSP to PSP for the user tasks.
•schedule- This function calls the calls the pendSv
interrupt for context switching.
•task delay- This function is used to block the task
for specified delay and then moves it to blocking
state until the specified delay is completed.
•unblock tasks- This function is used to unblock
the task once the specified delay has been
completed and moves it to ready state to schedule
it.

• MAX NUM OF TASKS and STACKSIZE are
pre processor macros that define the maximum
number of tasks that can be created and the size of
each task stack respectively.
• The task state defines a set of states that a task
can be in: ready and block.

• SysTick Handler - The timer interrupt
handler, responsible for updating the delay of
waiting tasks and finding the next ready task with
the next highest priority. When a higher-priority
task becomes ready, it will trigger the PendSV
interrupt with the schedule call function.

• pendsv Handler - The context switch interrupt
handler is responsible for saving the context of
the currently running task (registers R4-R11 and
the stack pointer) onto the stack of its TCB,
and then restoring the context of the next task
from its TCB. It also updates the state of the
TCBs and the running task ID. Finally, it enables
interrupts and returns to the interrupted code with
the special instructions like BX LR instruction.
The function does not need to save or restore the
registers R0-R3, PC,XPSR and LR (which are
saved automatically by the Cortex-M core), and



that the function has no prologue or epilogue code
(which is generated by the compiler by default).

C. source file structure

- The source file contains the functions whose
prototypes are declared in the header files.
• init tasks stack - This is implemented in
schedule.c source file. this function is used to
initialize the dummy values in the stack for starting
the scheduler.
• unblock tasks - This is implemented in schedule.c
source file. this function is used to unblock the
tasks. the unblocking is done by reducing the block
count for each systick interrupt and once the block
count reaches to 0 and it is in blocked state then it
moves the task to ready state.
• task delay - This is implemented in schedule.c
source file. this function is used to block the tasks.
the blocking is done by taking the block count
from the argument of task delay.
• update next task - This is implemented in
schedule.c source file. this function is used to
update the next task. It is done by comparing other
tasks priority with all other tasks and takes the
next highest priority and will schedule that task.
• create task - This is implemented in schedule.c
source file. this function is used to create task and
will assign the priority as given. It will create task
based on the arguments passed to it, one is function
pointer to task handler and other is priority. It will
create task with the corresponding task handler
and priority.
• delete task - This is implemented in schedule.c
source file. this function is used to delete task
based on function pointer to task handler. It will
remove the task from the user task array.

D. Interrrupt services

- The section contains the interrupt services used
in the project and the function prototypes were
declared in the header file.
• pendsv Handler - This is implemented in
schedule.c source file. this function is used for
context switching whenever pendsv interrupt is

triggered.
• schedule - This is implemented in schedule.c
source file. this function is used to trigger pendsv
by enabling it.
• systick handler - This is implemented in
systick.c source file. this function is used for
handling systick interrupt. the interrupt occurs for
every 1ms. In this function we reduce the block
count for each time interrupt occurs and calls
scheduler to trigger the pendsv.
• init systick timer - This is implemented in
systick.c source file. this function is used for
intializing the systick interrupt. we load the value
of no of ticks for which the interrupt needs to raise.


