
Quantum Information Theory (E2-270) (Spring 2025) HW3
Instructor: Prof. Shayan Srinivasa Garani

1. PROBLEM 1: Exercise 5.2.9 (Mark Wilde) Show that the matrix representation
of an isometric extension UA→BE of the amplitude damping channel is

⟨0|B ⟨0|E UA→BE |0⟩A ⟨0|B ⟨0|E UA→BE |1⟩A
⟨0|B ⟨1|E UA→BE |0⟩A ⟨0|B ⟨1|E UA→BE |1⟩A
⟨1|B ⟨0|E UA→BE |0⟩A ⟨1|B ⟨0|E UA→BE |1⟩A
⟨1|B ⟨1|E UA→BE |0⟩A ⟨1|B ⟨1|E UA→BE |1⟩A

 =


0

√
1− γ

1 0
0 0
0

√
γ

 ,
where γ (with 0 ≤ γ ≤ 1) is the damping parameter of the amplitude damping channel.
Solution: We need to demonstrate that the given matrix represents the isometric
extension UA→BE of the amplitude damping channel.

The amplitude damping channel models a quantum system losing energy to an envi-
ronment, typically a qubit decaying from the excited state |1⟩ to the ground state |0⟩
with a probability related to γ. The Kraus operators for this channel are:

N0 = |0⟩ ⟨0|+
√
1− γ |1⟩ ⟨1| , N1 =

√
γ |0⟩ ⟨1| .

The isometric extension of the amplitude damping channel NA→B is

UN
A→BE =

∑
j

Nj ⊗ |j⟩E

where Nj’s are the Kraus operators of the channel. For an amplitude damping channel,

N0 =

(
1 0
0

√
γ

)
⇒ |0⟩ ⟨0|+√

γ |1⟩ ⟨1|

and

N1 =

(
0

√
1− γ

0 0

)
⇒ |0⟩ ⟨1|

√
1− γ

Let’s compute elements of isometric extension of UN
A→BE:(

UN
A→BE

)
00

= ⟨0|B ⟨0|E U
N
A→BE |0⟩A

= ⟨0|B ⟨0|E

(∑
j

Nj ⊗ |j⟩E

)
|0⟩A

=
∑
j

⟨0B|Nj|0A⟩ ⟨0E|jE⟩

= ⟨0B|N0|0A⟩ ⟨0E|0E⟩+ ⟨0B|N1|0A⟩ ⟨0E|1E⟩

⇒
(
UN
A→BE

)
00

= 0
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Now, (
UN
A→BE

)
01

= ⟨0|B ⟨0|E U
N
A→BE |1⟩A

=
∑
j

⟨0B|Nj|1A⟩ ⟨0E|jE⟩

= ⟨0B|N0|1A⟩ ⟨0E|0E⟩+ ⟨0B|N1|1A⟩ ⟨0E|1E⟩

⇒
(
UN
A→BE

)
01

=
√
γ

Again, (
UN
A→BE

)
10

= ⟨0|B ⟨1|E UN
A→BE |0⟩A

=
∑
j

⟨0|B Nj |0⟩A ⟨1|j⟩E

= ⟨0B|N0|0A⟩ ⟨1E|0E⟩+ ⟨0B|N1|0A⟩ ⟨1E|1E⟩ = 1

Also, (
UN
A→BE

)
11

= ⟨0|B ⟨1|E U
N
A→BE |1⟩A

=
∑
j

⟨0B|Nj|1A⟩ ⟨1E|jE⟩

= ⟨0B|N0|1A⟩ ⟨1E|0E⟩+ ⟨0B|N1|1A⟩ ⟨1E|1E⟩

⇒
(
UN
A→BE

)
11

= 0

Consider, (
UN
A→BE

)
20

= ⟨1|B ⟨0|E U
N
A→BE |0⟩A

=
∑
j

⟨1B|Nj|0A⟩ ⟨0E|jE⟩

= ⟨1B|N0|0A⟩ ⟨0E|0E⟩+ ⟨1B|N1|0A⟩ ⟨0E|1E⟩

= 0 · 1 + 0 · 0 = 0

⇒
(
UN
A→BE

)
20

= 0

Consider, (
UN
A→BE

)
21

= ⟨1|B ⟨0|E U
N
A→BE |1⟩A

=
∑
j

⟨1B|Nj|1A⟩ ⟨0E|jE⟩

= ⟨1B|N0|1A⟩ ⟨0E|0E⟩+ ⟨1B|N1|1A⟩ ⟨0E|1E⟩ = 0

⇒
(
UN
A→BE

)
21

= 0

Consider, (
UN
A→BE

)
30

= ⟨1|B ⟨1|E U
N
A→BE |0⟩A
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=
∑
j

⟨1B|Nj|0A⟩ ⟨1E|jE⟩

= ⟨1B|N0|0A⟩ ⟨1E|0E⟩+ ⟨1B|N1|0A⟩ ⟨1E|1E⟩

= 0 · 0 + 0 · 1 = 0

⇒
(
UN
A→BE

)
30

= 0

Consider, (
UN
A→BE

)
31

= ⟨1|B ⟨1|E U
N
A→BE |1⟩A

=
∑
j

⟨1B|Nj|1A⟩ ⟨1E|jE⟩

= ⟨1B|N0|1A⟩ ⟨1E|0E⟩+ ⟨1B|N1|1A⟩ ⟨1E|1E⟩

=
√
γ · 0 +

√
1− γ · 1 =

√
1− γ

⇒
(
UN
A→BE

)
31

=
√

1− γ

Thus, the solution is:
⟨0|B ⟨0|E UA→BE |0⟩A ⟨0|B ⟨0|E UA→BE |1⟩A
⟨0|B ⟨1|E UA→BE |0⟩A ⟨0|B ⟨1|E UA→BE |1⟩A
⟨1|B ⟨0|E UA→BE |0⟩A ⟨1|B ⟨0|E UA→BE |1⟩A
⟨1|B ⟨1|E UA→BE |0⟩A ⟨1|B ⟨1|E UA→BE |1⟩A

 =


0

√
1− γ

1 0
0 0
0

√
γ


Exercise 5.2.10 (Mark Wilde) Consider a full unitary VAE→BE such that

TrE{V (ρA ⊗ |0⟩ ⟨0|E)V
†}

gives the amplitude damping channel. Show that a matrix representation of V is
⟨0|B ⟨0|E V |0⟩A ⟨0|E V |0⟩A ⟨0|B ⟨0|E V |0⟩A ⟨0|E V |1⟩A ⟨0|B ⟨0|E V |1⟩A ⟨0|E V |0⟩A ⟨0|B ⟨0|E V |1⟩A ⟨0|E V |1⟩A
⟨0|B ⟨1|E V |0⟩A ⟨0|E V |0⟩A ⟨0|B ⟨1|E V |0⟩A ⟨0|E V |1⟩A ⟨0|B ⟨1|E V |1⟩A ⟨0|E V |0⟩A ⟨0|B ⟨1|E V |1⟩A ⟨0|E V |1⟩A
⟨1|B ⟨0|E V |0⟩A ⟨0|E V |0⟩A ⟨1|B ⟨0|E V |0⟩A ⟨0|E V |1⟩A ⟨1|B ⟨0|E V |1⟩A ⟨0|E V |0⟩A ⟨1|B ⟨0|E V |1⟩A ⟨0|E V |1⟩A
⟨1|B ⟨1|E V |0⟩A ⟨0|E V |0⟩A ⟨1|B ⟨1|E V |0⟩A ⟨0|E V |1⟩A ⟨1|B ⟨1|E V |1⟩A ⟨0|E V |0⟩A ⟨1|B ⟨1|E V |1⟩A ⟨0|E V |1⟩A



=


1 0 0 0
0

√
1− γ 0 0

0 0 0
√
1− γ

0 0
√
γ 0

 .

Solution:
We need to show that the given matrix represents the isometric extension V of the
amplitude damping channel. Understanding the Problem Here, V is a unitary operator
acting on A and E, mapping to B and E, such that tracing out E from V (ρA ⊗
|0⟩ ⟨0|E)V † yields the amplitude damping channel. The matrix is 4 × 4, representing
outer products of the action of V on |0⟩A |0⟩E and |1⟩A |0⟩E, projected onto B and E.
The basis for BE is {|00⟩BE , |10⟩BE , |01⟩BE , |11⟩BE}, and each element is a product
of inner products.

We know UN
AE→BE, hence we can calculate the action V on the basis |00⟩AE and |10⟩AE

as follows:
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V |00⟩AE = UN
A→BE |0⟩ =


0

√
γ

1 0
0 0
0

√
1− γ

[10
]
=


0
1
0
0

 = |01⟩AE

Similarly,

V |10⟩AE = UN
A→BE |1⟩ =


0

√
γ

1 0
0 0
0

√
1− γ

[01
]
=


√
γ
0
0√
1− γ

 =
√
γ |00⟩AE+

√
1− γ |11⟩AE

Now to evaluate the action of V on the remaining two basis states |01⟩AE and |11⟩AE.
Let us assume

V |01⟩AC =


a
b
c
d

 , V |11⟩AC =


e
f
g
h


We know that V is unitary, hence norm will be 1, which means

|a|2 + |b|2 + |c|2 + |d|2 = 1

and
|e|2 + |f |2 + |g|2 + |h|2 = 1

Further,

⟨11|01⟩ = 0 ⇒ ⟨11|V †V |01⟩ = 0 ⇒
[
e∗ f ∗ g∗ h∗

] 
a
b
c
d

 = 0 ⇒ ae∗+bf ∗+cg∗+dh∗ = 0

Similarly,

⟨00|01⟩ = 0 ⇒ ⟨00|V †V |01⟩ = 0 ⇒ ⟨01|


a
b
c
d

 =
[
0 1 0 0

] 
a
b
c
d

⇒ b = 0 (1)

Similarly,

⟨00|11⟩ = 0 ⇒ ⟨00|V †V |11⟩ = 0 ⇒
[
0 1 0 0

] 
e
f
g
h

 = 0 ⇒ f = 0 (2)
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Finally

⟨10|01⟩ = 0 ⇒ ⟨10|V †V |01⟩ = 0 ⇒
[√
γ 0 0

√
1− γ

] 
a
b
c
d

 = 0

⇒ a
√
γ + d

√
1− γ = 0 ⇒ d = −

√
γ

√
1− γ

a (3)

In a similar way, we can write:

⟨10|11⟩ = 0

⇒ ⟨10|V †V |11⟩ = 0

⇒
[√
γ 0 0

√
1− γ

] 
e
f
g
h

 = 0

⇒ e
√
γ + h

√
1− γ = 0 ⇒ h = −

√
γ

√
1− γ

e

From Eq. (1) and Eq. (2),
b = 0 and f = 0

|a|2 + |b|2 + |c|2 + |d|2 = 1 ⇒ |a|2 + |c|2 + γ

1− γ
|a|2 = 1 ⇒ |c|2 = 1− 1

1− γ
|a|2

In a similar way:

|g|2 = 1− 1

1− γ
|e|2

Now
ae∗ + bf ∗ + cg∗ + dh∗ = 0

⇒ ae∗ + 0 + cg∗ +

(
−√

γ
√
1− γ

a

)
·
(

−√
γ

√
1− γ

e∗
)

= 0

Let us assume:

a = |a|eiα ⇒ d =
−√

γ
√
1− γ

|a|eiα

c =

√
1− 1

1− γ
|a|2 eiβ (5)

e =

√
1− 1

1− γ
|e|2 eiγ (6)
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If we opt e = 0, then g = 1 and opting:

a = −
√

1− γ ⇒ |a|2 = 1− γ

c =

√
1− 1

1− γ
(1− γ) eiβ = 0

d =
−√

γ
√
1− γ

(
−
√
1− γ

)
=

√
γ

Here:
V : |00⟩BE → |00⟩AE

|01⟩BE →
√

1− γ |00⟩AE +
√
γ |10⟩AE

|10⟩BE → √
γ |00⟩AE +

√
1− γ |11⟩AE

|11⟩BE → |11⟩AE
Thus, the solution is:[⟨0|B ⟨0|E V |0⟩A ⟨0|E V |0⟩A ⟨0|B ⟨0|E V |0⟩A ⟨0|E V |1⟩A ⟨0|B ⟨0|E V |1⟩A ⟨0|E V |0⟩A ⟨0|B ⟨0|E V |1⟩A ⟨0|E V |1⟩A
⟨0|B ⟨1|E V |0⟩A ⟨0|E V |0⟩A ⟨0|B ⟨1|E V |0⟩A ⟨0|E V |1⟩A ⟨0|B ⟨1|E V |1⟩A ⟨0|E V |0⟩A ⟨0|B ⟨1|E V |1⟩A ⟨0|E V |1⟩A
⟨1|B ⟨0|E V |0⟩A ⟨0|E V |0⟩A ⟨1|B ⟨0|E V |0⟩A ⟨0|E V |1⟩A ⟨1|B ⟨0|E V |1⟩A ⟨0|E V |0⟩A ⟨1|B ⟨0|E V |1⟩A ⟨0|E V |1⟩A
⟨1|B ⟨1|E V |0⟩A ⟨0|E V |0⟩A ⟨1|B ⟨1|E V |0⟩A ⟨0|E V |1⟩A ⟨1|B ⟨1|E V |1⟩A ⟨0|E V |0⟩A ⟨1|B ⟨1|E V |1⟩A ⟨0|E V |1⟩A

]

=


1 0 0 0
0

√
1− γ 0 0

0 0 0
√
1− γ

0 0
√
γ 0


Exercise 5.2.11 (Mark Wilde) Consider the full unitary operator for the amplitude
damping channel from the previous exercise. Show that the density operator

TrB
{
V (ρA ⊗ |0⟩⟨0|E)V †} (5.50)

that Eve receives has the following matrix representation:[
γp

√
γη∗√

γη 1− γp

]
if ρA =

[
1− p η
η∗ p

]
. (5.51)

By comparing with (4.356), observe that the output to Eve is the bit flip of the output
of an amplitude damping channel with damping parameter 1− γ.
Solution:

To compute TrB
{
V (ρA ⊗ |0⟩⟨0|E)V †} we have to evaluate the partial trace

TrB
{
V (ρA ⊗ |0⟩⟨0|E)V

†} =
∑
x

⟨x|B ⊗ IE V (ρA ⊗ |0⟩⟨0|E)V
† |x⟩B ⊗ IE

From the previous question we know that the matrix representation of V is

V =
∑
i,j,k,l

αijkl |i⟩B |j⟩E ⟨k|A ⟨l|E
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then

V † =
∑
m,n,p,q

(αmnpq |m⟩B |n⟩E ⟨p|A ⟨q|E)
† =

∑
m,n,p,q

α∗
mnpq |p⟩A |q⟩E ⟨m|B ⟨n|E

We already have computed

V (ρA ⊗ |0⟩⟨0|E)V
† =

∑
i,j,k

∑
m,n,p

αijk0α
∗
mnp0 |i⟩B |j⟩E ⟨k|A ρA |p⟩A ⟨m|B ⟨n|E (1)

Therefore, the partial trace we can evaluate as

TrB
{
V (ρA ⊗ |0⟩⟨0|E)V

†}
=
∑
x

⟨x|B ⊗ IE

{∑
i,j,k

∑
m,n,p

αijk0α
∗
mnp0 |i⟩B |j⟩E ⟨k|A ρA |p⟩A ⟨m|B ⟨n|E

}
|x⟩B ⊗ IE

=
∑
x

∑
i,j,k

∑
m,n,p

αijk0α
∗
mnp0 ⟨x⟩ iB︸ ︷︷ ︸

δx,i

|j⟩E ⟨k|A ρA |p⟩A ⟨m⟩xB︸ ︷︷ ︸
δx,m

⟨n|E

=
∑
j,k

∑
n,p

αxjk0α
∗
xnp0 |j⟩E ⟨k|A ρA |p⟩A ⟨n|E (2)

From the previous question Exercise 5.2.10 we have the coefficients

α0001 = −
√

1− γ, α0010 =
√
γ, α0100 = 1, α1011 = 1,

α0101 = 0, α1101 =
√
γ, α1110 =

√
1− γ

Rest of the elements of V are zero. Also, since no elements with l = 1 appear in
Equation (2), we need to consider only

α0010 =
√
γ, α0100 = 1, and α1110 =

√
1− γ

Applying all the coefficents in equation (3) becomes

α0010α
∗
0010 |0⟩E ⟨1|A ρA |1⟩A ⟨0|E + α0010α

∗
0100 |0⟩E ⟨1|A ρA |0⟩A ⟨1|E

+ α0100α
∗
0010 |1⟩E ⟨0|A ρA |1⟩A ⟨0|E + α0100α

∗
0100 |1⟩E ⟨0|A ρA |0⟩A ⟨1|E

+ α1110α
∗
1110 |1⟩E ⟨1|A ρA |1⟩A ⟨1|E

= α2
0010(ρA)11 |0⟩E ⟨0|+ α0010α0100(ρA)10 |0⟩E ⟨1|

+ α0100α0010(ρA)01 |1⟩E ⟨0|+ α2
0100(ρA)00 |1⟩E ⟨1|+ α2

1110(ρA)11 |1⟩E ⟨1| (3)

Given, ρA =

[
1− p η
η∗ p

]
Putting ρA in the Equation (3) we get

γp |10⟩E ⟨01|+√
γη∗ |10⟩E ⟨11|+√

γη |11⟩E ⟨01|+ (1− p) |11⟩E ⟨11|
= γp |0⟩E ⟨0|+√

γη∗ |0⟩E ⟨1|+√
γη |1⟩E ⟨0|+ (1− γp) |1⟩E ⟨1|

= γp

[
1 0
0 0

]
+
√
γη∗

[
0 1
0 0

]
+
√
γη

[
0 0
1 0

]
+ (1− γp)

[
0 0
0 1

]
=

[
γp

√
γη∗√

γη 1− γp

]
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which is the required result.

Exercise 5.4.1 (Mark Wilde) Suppose that there is a set of density operators ρkS
and a POVM {ΛkS} that identifies these states with high probability, in the sense that

∀k Tr
{
ΛkSρ

k
S

}
≥ 1− ε,

where ε ∈ (0, 1). Construct a coherent measurement US→SS′ and show that the coherent
measurement has a high probability of success in the sense that

|⟨ϕk|RS ⟨k|S′ US→SS′ |ϕk⟩RS|
2 ≥ 1− ε,

where each |ϕk⟩RS is a purification of ρk.

Solution: Given: ∀k,
tr
(
ΛkSρ

k
S

)
≥ 1− ϵ, ϵ ∈ (0, 1)

We have to find a coherent measurement US→SS′ such that:∣∣⟨ϕk|RS ⟨k|′S US→SS′ |ϕk⟩RS⟩
∣∣2 ≥ 1− ε

Let
US→SS′ =

∑
j

(
IR ⊗ ΛjS

)
⊗ |j⟩S′

Therefore, ∣∣⟨ϕk|RS ⟨k|′S US→SS′ |ϕk⟩RS⟩
∣∣2

=

∣∣∣∣∣⟨ϕk|RS ⟨k|′S
(∑

j

(
IR ⊗ ΛjS

)
⊗ |j⟩S′ ⟨j|S

)
|ϕk⟩RS

∣∣∣∣∣
2

Since the quantity above is a scalar, we get:

=

∣∣∣∣∣TrRS
{
⟨ϕk|RS ⟨k|

′
S

(∑
j

(
IR ⊗ ΛjS

)
⊗ |j⟩S′ ⟨j|S

)
|ϕk⟩RS

}∣∣∣∣∣
2

=

∣∣∣∣∣TrRS
{∑

j

⟨ϕk|RS
(
IR ⊗ ΛjS

)
|ϕk⟩RS ⟨k|j⟩

′
S

}∣∣∣∣∣
2

=
∣∣TrRS {⟨ϕk|RS (IR ⊗ ΛkS

)
|ϕk⟩RS

}∣∣2
By cyclic property of trace, we obtain:

=
∣∣TrRS {(IR ⊗ ΛkS

)
|ϕk⟩RS ⟨ϕk|

}∣∣2
By using the linearity of trace:

= |TrS {ΛS TrR (|ϕk⟩RS ⟨ϕk|)}|
2
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=
∣∣∣TrS {ΛkS (SkS)purified}∣∣∣2 = ∣∣TrS {ΛkSSkS}∣∣2 ≥ 1− ϵ

where (ρS)purified is the purification of ρS.

|⟨ϕk|RS ⟨k|S′ US→SS′ |ϕk⟩RS|
2 ≥ 1− ε

Exercise 9.2.7 (Mark Wilde) Let ρ, σ ∈ D(H). Show that the fidelity is invariant
with respect to an isometry U ∈ L(H,H0), i.e.,

F (ρ, σ) = F (UρU †, UσU †).

Solution:

To show that fidelity is invariant under an isometry U , we start with the definition

F (ρ, σ) =
∥∥√ρ√σ∥∥2

1
. If U is an isometry (i.e., U †U = I), then

√
UρU † = U

√
ρU †, and

similarly for σ. So we compute:

F (UρU †, UσU †) =
∥∥∥√UρU †

√
UσU †

∥∥∥2
1
=
∥∥U√ρ√σU †∥∥2

1
.

Using the fact that the trace norm is invariant under isometries, we get
∥∥U√ρ√σU †

∥∥
1
=∥∥√ρ√σ∥∥

1
. Therefore, F (UρU †, UσU †) = F (ρ, σ), as required.

Exercise 9.2.8 (Mark Wilde) Let ρ, σ ∈ D(HA) and let N : L(HA) → L(HB) be a
quantum channel. Show that the fidelity is monotone with respect to the channel N ,
i.e.,

F (ρ, σ) ≤ F (N (ρ),N (σ)).

Solution: The fidelity between two density matrices ρ and σ is given by:

F (ρ, σ) =

(
Tr
√√

ρσ
√
ρ

)2

.

Uhlmann’s theorem states that:

F (ρ, σ) = max
|ψρ⟩,|ψσ⟩

|⟨ψρ|ψσ⟩|2,

where |ψρ⟩ , |ψσ⟩ are purifications of ρ and σ, respectively.

Let |ψρ⟩ ∈ HA⊗HR be a purification of ρ, and similarly |ψσ⟩ ∈ HA⊗HR a purification
of σ. Then, the action of a quantum channel N on subsystem A gives rise to a new
state:

(N ⊗ IR)(|ψρ⟩⟨ψρ|),
which is a purification of N (ρ), and similarly for σ.

Since N ⊗ I is a completely positive trace-preserving (CPTP) map, it preserves inner
products in the sense that it cannot increase the fidelity. Hence:

|⟨ψρ|ψσ⟩|2 ≤ |⟨ψ′
ρ|ψ′

σ⟩|2,
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where ψ′ = (N ⊗ I)(ψ).
From Uhlmann’s theorem and the above observation:

F (ρ, σ) = max
ψρ,ψσ

|⟨ψρ|ψσ⟩|2 ≤ max
ψρ,ψσ

|⟨(N ⊗ I)ψρ|(N ⊗ I)ψσ⟩|2 = F (N (ρ),N (σ)).

Conclusion:

F (ρ, σ) ≤ F (N (ρ),N (σ)),

so the fidelity is monotonic under the action of a quantum channel N .

2. PROBLEM 2:
Show that the trace distance between two density operators is equivalent to the Eu-
clidean distance between their respective Bloch vectors. Interpret your results.

Solution:

For two single-qubit density operators ρ and σ with corresponding Bloch vectors r⃗ and
s⃗, we can show that the trace distance between them equals half the Euclidean distance
between their Bloch vectors.

First, we express the density operators in terms of their Bloch vectors:

ρ =
1

2
(I + r⃗ · σ⃗), σ =

1

2
(I + s⃗ · σ⃗),

where I is the identity matrix and σ⃗ = (σx, σy, σz) are the Pauli matrices.

The trace distance is defined as:

T (ρ, σ) =
1

2
∥ρ− σ∥1.

Computing the difference:

ρ− σ =
1

2
(r⃗ − s⃗) · σ⃗.

The eigenvalues of (r⃗ − s⃗) · σ⃗ are ±|r⃗ − s⃗|, so the trace norm becomes:

∥ρ− σ∥1 = |r⃗ − s⃗|.

Thus, the trace distance simplifies to:

T (ρ, σ) =
1

2
|r⃗ − s⃗|.

This shows that the trace distance between two single-qubit states is exactly half the
Euclidean distance between their Bloch vectors. This result has a clear geometric in-
terpretation in the Bloch sphere representation: states that are farther apart in the
Bloch sphere (larger Euclidean distance between their vectors) are more distinguish-
able (larger trace distance). When two states are antipodal (like |0⟩ and |1⟩), their
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Bloch vectors are maximally separated (|r⃗ − s⃗| = 2) and the trace distance reaches its
maximum value of 1.

The key result is:

T (ρ, σ) =
1

2
|r⃗ − s⃗|

3. PROBLEM 3: Exercise 9.13 (Neilson Chuang) Show that the bit flip channel
is contractive but not strictly contractive. Find the set of fixed points.

Solution:

The bit flip channel is defined as:

E(ρ) = (1− p)ρ+ pXρX,

where 0 < p < 1, and X is the Pauli-X operator.

Contractive It is a well-known fact that any completely positive trace-preserving
(CPTP) map is contractive with respect to the trace distance. That is,

D(E(ρ), E(σ)) ≤ D(ρ, σ)

for all density matrices ρ and σ. Since the bit flip channel is a CPTP map, it is
contracting. Let E be a completely positive trace-preserving (CPTP) map, and let ρ
and σ be two density operators. The trace distance between ρ and σ is defined as:

D(ρ, σ) =
1

2
∥ρ− σ∥1,

where the trace norm is defined by:

∥A∥1 = Tr
(√

A†A
)
.

We want to prove that:
D(E(ρ), E(σ)) ≤ D(ρ, σ).

This result follows from the monotonicity of the trace norm under CPTP maps. Ac-
cording to the Stinespring dilation theorem, any CPTP map E can be represented
as:

E(ρ) = TrE
(
U(ρ⊗ |0⟩⟨0|)U †) ,

for some unitary U on a larger Hilbert space and partial trace over an environment E.
Since the trace norm is unitarily invariant:

∥UAU †∥1 = ∥A∥1,

and non-increasing under partial trace:

∥TrE(A)∥1 ≤ ∥A∥1,
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we have:
∥E(ρ)− E(σ)∥1 ≤ ∥ρ− σ∥1.

Therefore,
D(E(ρ), E(σ)) ≤ D(ρ, σ),

which proves that CPTP maps are contractive with respect to the trace distance.

Not Strictly Contractive A channel is strictly contractive if:

D(E(ρ), E(σ)) < D(ρ, σ) for all ρ ̸= σ.

Let ρ = 1
2
(I + aX), σ = 1

2
(I + bX). Since XρX = ρ and similarly for σ, we find:

E(ρ) = ρ, E(σ) = σ,

so
D(E(ρ), E(σ)) = D(ρ, σ),

which shows that the channel is not strictly contractive. Fixed Points We look for
density matrices ρ such that:

E(ρ) = ρ.

This implies:
(1− p)ρ+ pXρX = ρ ⇒ XρX = ρ.

Thus, ρ must be invariant under conjugation by X. This happens if and only if ρ is of
the form:

ρ =
1

2
(I + aX), with − 1 ≤ a ≤ 1.

Therefore, the set of fixed points is the set of all density matrices lying along the x-axis
of the Bloch sphere.

Exercise 9.9 (Neilson Chuang) Existence of Fixed Points for Quantum Operations

Solution:

We have to prove that any trace-preserving quantum operation E has a fixed point,
i.e., there exists a density operator ρ such that

E(ρ) = ρ.

Approach: Use Schauder’s fixed point theorem.

Schauder’s fixed point theorem: Let K be a convex, compact subset of a Hilbert
space, and let f : K → K be a continuous map. Then f has at least one fixed point.

Application to Quantum Channels:

Let D(H) denote the set of all density operators on a finite-dimensional Hilbert space
H. This set has the following properties:
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• Convex: If ρ1, ρ2 ∈ D(H), then for any λ ∈ [0, 1], the operator λρ1 + (1 − λ)ρ2
is also a density operator.

• Compact: In finite-dimensional spaces, the set of density matrices is closed and
bounded in the space of trace-class operators.

• Subset of a Hilbert space: Density matrices are elements of the space of
Hermitian operators, which forms a finite-dimensional Hilbert space.

• Continuity: Any trace-preserving quantum operation E is a completely positive
trace-preserving (CPTP) linear map and thus continuous.

Therefore, all conditions of Schauder’s fixed point theorem are satisfied.

Conclusion: There exists at least one density operator ρ such that

E(ρ) = ρ.

Exercise 9.11 (Nielsen and Chuang) Suppose E is a trace-preserving quantum
operation for which there exists a density operator ρ0 and a trace-preserving quantum
operation E ′ such that

E(ρ) = pρ0 + (1− p)E ′(ρ), (9.52)

for some p, 0 < p ≤ 1. Physically, this means that with probability p the input state
is thrown out and replaced with the fixed state ρ0, while with probability 1 − p the
operation E ′ occurs. Use joint convexity to show that E

Solution:

Given the trace-preserving quantum operation E with the decomposition:

E(ρ) = pρ0 + (1− p)E ′(ρ),

where 0 < p ≤ 1, ρ0 is a fixed density operator, and E ′ is another trace-preserving
quantum operation, we will prove that E is strictly contractive and consequently has
a unique fixed point.

For any two density operators ρ and σ, we analyze the trace distance after applying E :

T (E(ρ), E(σ)) = T (pρ0 + (1− p)E ′(ρ), pρ0 + (1− p)E ′(σ)) .

By the joint convexity of the trace distance, this satisfies:

T (E(ρ), E(σ)) ≤ p T (ρ0, ρ0) + (1− p)T (E ′(ρ), E ′(σ)) = (1− p)T (E ′(ρ), E ′(σ)),

since T (ρ0, ρ0) = 0. Furthermore, because any quantum operation is contractive under
the trace distance, we have:

T (E ′(ρ), E ′(σ)) ≤ T (ρ, σ).

Combining these inequalities yields the strict contractivity:

T (E(ρ), E(σ)) ≤ (1− p)T (ρ, σ) < T (ρ, σ),
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where the strict inequality holds because 0 < p ≤ 1 ensures 0 ≤ 1− p < 1.

To establish the existence and uniqueness of the fixed point, consider the sequence
ρn+1 = E(ρn) starting from any initial state ρ1. The contractivity implies:

T (ρn+1, ρn) ≤ (1− p)T (ρn, ρn−1) ≤ (1− p)nT (ρ1, ρ0).

Since (1− p)n → 0 as n→ ∞, the sequence is Cauchy. The space of density operators
being complete under the trace distance guarantees convergence to a unique fixed point
ρ∗ satisfying E(ρ∗) = ρ∗.

Acknowledgement: The solutions are prepared by Sudhir Kumar Sahoo and Abhi Kumar
Sharma.
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