
Quantum Information Theory (E2-270) (Spring 2025) HW2
Instructor: Prof. Shayan Srinivasa Garani

1. PROBLEM 1: Exercise 4.6.3 (Mark Wilde) Show that both a classical–quantum
channel and a quantum–classical channel are entanglement-breaking—i.e., if we input
the A system of a bipartite state ρRA to either of these channels, then the resulting
state on systems RB is separable.
Solution:

A quantum channel NA→B is entanglement-breaking if for every bipartite input state
ρRA, the resulting state

(IR ⊗NA→B)(ρRA)

is separable across the R : B partition. This means it can be written as:

ρRB =
∑
i

piρ
(i)
R ⊗ ρ

(i)
B

for some probability distribution {pi} and states ρ
(i)
R , ρ

(i)
B . A sufficient condition for

NA→B to be entanglement-breaking if it can be expressed as:

NA→B(ρ) =
∑
i

BiρB
†
i ,

where the Kraus operators Bi are rank-1, meaning they map any input state to a pure
or classical state.

A classical–quantum channel (CQ) is a quantum channel that first measures a quantum
state and then encodes the classical outcome into a fixed set of quantum states. It can
be written as:

NCQ(ρ) =
∑
i

Tr(Miρ) |ψi⟩ ⟨ψi| ,

where {Mi} is a positive operator-valued measure (POVM) representing a measure-
ment, and |ψi⟩ are fixed quantum states assigned to each outcome. When applied to
one half of an entangled state ρRA, the resulting bipartite state is:

ρRB =
∑
i

TrA(MiρRA)⊗ |ψi⟩ ⟨ψi| .

Since this is an explicit convex sum of product states, it is separable, proving that a
CQ channel is entanglement-breaking.

A quantum–classical (QC) channel measures a quantum system and outputs classical
information. It is described by:

NQC(ρ) =
∑
i

Tr(Miρ) |i⟩ ⟨i| ,
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where |i⟩ are orthonormal classical basis states. For a bipartite input ρRA, the output
state is:

ρRB =
∑
i

TrA(MiρRA)⊗ |i⟩ ⟨i| .

This is again a classical mixture of separable states, proving that a QC channel is also
entanglement-breaking.

Since both CQ and QC channels produce output states that are convex combinations of
separable states, they always destroy entanglement when acting on part of an entangled
state. Therefore, both CQ and QC channels are entanglement-breaking.

Exercise 4.7.5 (Mark Wilde) Show that the action of a depolarizing channel on the
Bloch vector is

(rx, ry, rz) → ((1− p)rx, (1− p)ry, (1− p)rz).

Thus, it uniformly shrinks the Bloch vector to become closer to the maximally mixed
state.

Solution:

The depolarizing channel Ndep is a quantum noise channel that replaces the input
quantum state ρ with the maximally mixed state I/2 with probability p, while leaving
it unchanged with probability 1− p. Mathematically, this channel acts on a quantum
state ρ as:

Ndep(ρ) = (1− p)ρ+
p

2
I.

Any single-qubit density matrix ρ can be expressed in terms of its Bloch vector com-
ponents rx, ry, rz as:

ρ =
1

2
(I + rxσx + ryσy + rzσz) ,

where σx, σy, σz are the Pauli matrices. The depolarizing channel acts linearly on ρ, so
applying it to the above representation gives:

Ndep(ρ) = (1− p)ρ+
p

2
I.

Substituting the expression for ρ:

Ndep(ρ) = (1− p) · 1
2
(I + rxσx + ryσy + rzσz) +

p

2
I.

Expanding and simplifying,

Ndep(ρ) =
1

2
(I + (1− p)rxσx + (1− p)ryσy + (1− p)rzσz) .

From this, we see that the Bloch vector transforms as:

(rx, ry, rz) → ((1− p)rx, (1− p)ry, (1− p)rz).
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This shows that the depolarizing channel **uniformly shrinks the Bloch vector** by a
factor of (1− p), effectively bringing the quantum state closer to the maximally mixed
state I/2. When p = 1, all the Bloch vector components vanish, leaving the completely
mixed state I/2, which has no coherence or purity. The depolarizing channel thus serves
as a model of isotropic noise affecting a quantum system, gradually erasing information
about the original state.

Exercise: 4.7.6 (Mark Wilde) Show that randomly applying the Heisenberg–Weyl
operators

{X(i)Z(j)}i,j∈{0,...,d−1}

with uniform probability to any qudit density operator gives the maximally mixed
state π:

1

d2

d−1∑
i,j=0

X(i)Z(j)ρZ†(j)X†(i) = π.

(Hint: You can do the full calculation, or you can decompose this channel into the
composition of two completely dephasing channels where the first is a dephasing in the
computational basis and the next is a dephasing in the conjugate basis.)

Solution:

The Heisenberg–Weyl operators X(i) and Z(j) are the generalized Pauli operators for
a d-dimensional qudit system, defined as:

X(j) |k⟩ = |k + j mod d⟩ , Z(j) |k⟩ = e2πijk/d |k⟩ .

These operators satisfy the commutation relation:

Z(j)X(i) = e2πij/dX(i)Z(j).

The given quantum channel applies these operators uniformly over all i, j, meaning it
performs an average over all possible displacements in the qudit Hilbert space. Math-
ematically, this channel is represented as:

N (ρ) =
1

d2

d−1∑
i,j=0

X(i)Z(j)ρZ†(j)X†(i).

Effect of Averaging over Heisenberg–Weyl Operators To understand the effect of N on
a general density matrix ρ, we expand ρ in terms of the Heisenberg–Weyl basis:

ρ =
∑
m,n

cm,nX(m)Z(n).

Since the channel sums over all X(i)Z(j), let’s analyze how these terms transform:

X(i)Z(j)X(m)Z(n)Z†(j)X†(i) = ωm(j−n)−inZ(n)X(m).
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Using the commutation relation, this results in a phase factor depending on i, j,m, n,
which averages to zero unless m = n = 0. The only surviving term is the identity
matrix contribution:

1

d2

∑
i,j

X(i)Z(j)ρZ†(j)X†(i) =
I

d
.

Alice then transmits two classical bits encoding the measurement result to Bob. Upon
receiving this information, Bob applies the appropriate Pauli correction I,X, Z,XZ to
recover |ψ⟩ perfectly.
Exercise 4.7.8 (Mark Wilde): Show that the amplitude damping channel obeys
a composition rule. Consider an amplitude damping channel N1 with transmission
parameter (1 − γ1) and another amplitude damping channel N2 with transmission
parameter (1−γ2). Show that the composition channelN2◦N1 is an amplitude damping
channel with transmission parameter (1 − γ2)(1 − γ1). (Note that the transmission
parameter is equal to one minus the damping parameter.)
Solution: The amplitude damping channel models energy dissipation in a quantum
system, such as spontaneous emission. The channel is described by the Kraus operators:

E0 =

[
1 0
0

√
1− γ

]
, E1 =

[
0

√
γ

0 0

]
, (1)

where γ represents the damping probability.

For the first amplitude damping channel N1 with damping parameter γ1, the Kraus
operators are:

E
(1)
0 =

[
1 0
0

√
1− γ1

]
, E

(1)
1 =

[
0

√
γ1

0 0

]
. (2)

Applying another amplitude damping channel N2 with damping parameter γ2 leads to
new Kraus operators E

(2)
0 and E

(2)
1 :

E
(2)
0 =

[
1 0
0

√
1− γ2

]
, E

(2)
1 =

[
0

√
γ2

0 0

]
. (3)

The composition of the two channels is given by applying the Kraus operators of N2

after those of N1. The effective Kraus operators are:

E
(2)
0 E

(1)
0 =

[
1 0

0
√
(1− γ1)(1− γ2)

]
, (4)

E
(2)
0 E

(1)
1 =

[
0

√
γ1(1− γ2)

0 0

]
, (5)

E
(2)
1 E

(1)
0 =

[
0

√
γ2(1− γ1)

0 0

]
, (6)

E
(2)
1 E

(1)
1 =

[
0

√
γ1γ2

0 0

]
. (7)
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The new Kraus operators describe an amplitude damping channel with an effective
damping parameter γ′, given by the total probability of an excitation being lost:

γ′ = 1− (1− γ1)(1− γ2). (8)

Thus, the transmission parameter of the composed channel is:

(1− γ′) = (1− γ1)(1− γ2). (9)

This confirms that the composition of two amplitude damping channels is itself an
amplitude damping channel with the expected transmission parameter, completing
the proof.

2. PROBLEM 2: Work out the following problems:
(1) Establish the Schmidt decomposition result when the dimension of the quantum
systems A and B are not the same, i.e., in the most general form.
Solution: The Schmidt decomposition theorem states that any pure state in a bi-
partite Hilbert space can be expressed as a sum of product states with nonnegative
singular values. We establish this result in the general case where the subsystems A
and B have different dimensions.

Let HA and HB be finite-dimensional Hilbert spaces of dimensions dA and dB, respec-
tively. Consider a pure state |ψ⟩ in the composite Hilbert space:

H = HA ⊗HB,

where dim(HA) = dA and dim(HB) = dB, with possibly dA ̸= dB.

Let {|ei⟩} and {|fj⟩} be orthonormal bases for HA and HB, respectively. We can
expand |ψ⟩ as

|ψ⟩ =
dA∑
i=1

dB∑
j=1

Cij |ei⟩ ⊗ |fj⟩

where C is a dA × dB complex coefficient matrix.

The Schmidt decomposition follows from the singular value decomposition (SVD) of
the coefficient matrix C. Using SVD, we can write C as

C = UΛV †

where U is a dA × dA unitary matrix, V is a dB × dB unitary matrix, Λ is a dA × dB
diagonal matrix with nonnegative singular values λk on the diagonal (arranged in non-
increasing order). The number of nonzero singular values is at most r = min(dA, dB),
which is the rank of C. Defining new orthonormal bases:

|ẽk⟩ =
dA∑
i=1

Uik |ei⟩ , |f̃k⟩ =
dB∑
j=1

Vjk |fj⟩
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we rewrite |ψ⟩ as:

|ψ⟩ =
r∑

k=1

λk |ẽk⟩ ⊗ |f̃k⟩

where λk are the nonzero singular values of C, and |ẽk⟩, |f̃k⟩ form new orthonormal
bases for subspaces of HA and HB, respectively. This is the general form of the
Schmidt decomposition for a bipartite quantum state when the dimensions of the two
subsystems are different. The number of nonzero terms in the sum is given by the
Schmidt rank r = min(dA, dB), and the coefficients λk (Schmidt coefficients) determine
the degree of entanglement of the state.

(2) Establish mathematically how Schmidt decomposition can help examine if a pure
bipartite state |ϕ⟩AB is an entangled state or a product state.

Solution: Given a pure bipartite state |ϕ⟩AB in the Hilbert space HA ⊗ HB, the
Schmidt decomposition theorem states that it can be written as

|ϕ⟩AB =
r∑

k=1

λk |ẽk⟩ ⊗ |f̃k⟩

where λk are the Schmidt coefficients, |ẽk⟩ and |f̃k⟩ are orthonormal bases for subspaces
of HA and HB, respectively, and r = min(dA, dB) is the Schmidt rank of the state. To
determine whether |ϕ⟩AB is an entangled state or a product state, we examine the
Schmidt rank r: - If r = 1, then the state can be written as |ϕ⟩AB = λ1 |ẽ1⟩ ⊗ |f̃1⟩,
which is a product state, meaning there is no entanglement.
- If r > 1, then the state is entangled since it cannot be factorized into a tensor product
of states from HA and HB.

Comment: If the composite state ρAB = |ψ⟩ ⟨ψ| is pure, it is a product state if
and only if the reduced density matrices ρA and ρB are pure states. For example, if
Alice’s spin is definitely up and Bob’s spin is definitely down, then the composite state
represents a pure state:

ρ↑↓ = |↑⟩A ⟨↑| ⊗ |↓⟩B ⟨↓| ,

where |↑⟩ = |0⟩ and |↓⟩ = |1⟩.

=

(
1 0
0 0

)
⊗
(
0 0
0 1

)
=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

Conversely, this means that every pure state whose subsystems are in mixed
states must be entangled! [1]

3. PROBLEM 3 : Exercise 8.3 (Nielsen and Chuang): Our derivation of the
operator-sum representation implicitly assumed that the input and output spaces for
the operation were the same. Suppose a composite system AB initially in an unknown
quantum state ρ is brought into contact with a composite system CD initially in some
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standard state |0⟩, and the two systems interact according to a unitary interaction U .
After the interaction, we discard systems A and D, leaving a state E(ρ) of system BC.
Show that the map

E(ρ) =
∑
k

EkρE
†
k (10)

for some set of linear operators Ek from the state space of system AB to the state
space of system BC, and such that ∑

k

E†
kEk = I. (11)

Solution:

We begin with a composite system AB in an unknown quantum state ρ and another
system CD initialized in a standard state |0⟩. The total initial state of the four systems
is given by:

ρAB ⊗ |0⟩CD ⟨0| . (12)

The systems then evolve under a unitary interaction U , which acts on the entire com-
posite system:

ρ′ = U(ρAB ⊗ |0⟩CD ⟨0|)U †. (13)

After the interaction, we discard systems A and D, which corresponds to taking the
partial trace over those subsystems:

E(ρ) = TrAD(ρ
′). (14)

Using a basis {|a⟩} for system A and a basis {|d⟩} for system D, we can express the
partial trace as:

E(ρ) =
∑
a,d

⟨a, d|U(ρ⊗ |0⟩ ⟨0|)U † |a, d⟩ . (15)

Defining the operators:
Ek = ⟨k|U |0⟩ , (16)

where |k⟩ labels the basis vectors of systems A and D, we can rewrite the expression
as:

E(ρ) =
∑
k

EkρE
†
k. (17)

Finally, since U is unitary, it preserves inner products, which implies:∑
k

E†
kEk = I. (18)

Thus, we have shown that the map E(ρ) satisfies the operator-sum representation with
Kraus operators Ek, completing the proof.
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Exercise 8.10 (Nielsen and Chuang): Using the Freedom in Operator-Sum Rep-
resentation, all quantum operations E on a system of Hilbert space dimension d can
be generated by an operator-sum representation containing at most d2 elements:

E(ρ) =
M∑
j=1

EjρE
†
j , (19)

where 1 ≤M ≤ d2. Let {Ej} be a set of operation elements for E. Define a matrix:

Wjk ≡ Tr(E†
jEk). (20)

Show that the matrix W is Hermitian and of rank at most d2, and thus there exists a
unitary matrix u such that uWu† is diagonal with at most d2 nonzero entries. Use u
to define a new set of at most d2 nonzero operation elements {Fj} for E.

Solution: We begin by defining the matrix W whose elements are given by:

Wjk = Tr(E†
jEk). (21)

Since the trace inner product satisfies Tr(A†B) = Tr(B†A), it follows that:

Wjk = Tr(E†
jEk) = Wkj, (22)

which implies that W is a Hermitian matrix.

The rank of W is determined by the number of linearly independent operators in the
set {Ej}. Since the operators act on a Hilbert space of dimension d, they can be
represented as d × d matrices. Consequently, the space of all possible operators has
dimension at most d2. Therefore, the rank of W is at most d2.

By the spectral theorem for Hermitian matrices, there exists a unitary matrix u such
that uWu† is diagonal. Explicitly, we can write:

uWu† = Λ, (23)

where Λ is a diagonal matrix with at most d2 nonzero entries, given that rank(W ) ≤ d2.

We now define a new set of operation elements {Fj} by:

Fj =
∑
k

ujkEk. (24)

Substituting this into the operator-sum representation:

E(ρ) =
∑
k

EkρE
†
k =

∑
j,k

ujkEkρ
∑
m

u∗jmE
†
m. (25)

Rearranging sums, we obtain:

E(ρ) =
∑
j

FjρF
†
j . (26)
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Since u is unitary, the new set {Fj} also satisfies the completeness relation:∑
j

F †
j Fj =

∑
j,k,m

u∗jkE
†
kujmEm =

∑
k,m

δkmE
†
kEm =

∑
k

E†
kEk = I. (27)

Thus, we have constructed a new operator-sum representation for E with at most d2

nonzero terms, completing the proof.

Exercise 8.11 (Nielsen and Chuang): Suppose E is a quantum operation mapping
a d-dimensional input space to a d′-dimensional output space. Show that E can be
described using a set of at most dd′ operation elements {Ek}.
Solution: A quantum operation E can be described by an operator-sum representa-
tion:

E(ρ) =
∑
k

EkρE
†
k, (28)

where {Ek} are the operation elements. The goal is to show that we can always find a
set with at most dd′ elements.

The operators Ek map a d-dimensional Hilbert space to a d′-dimensional Hilbert space,
meaning that each Ek is a d′ × d matrix. The space of all possible linear operators
acting between these two Hilbert spaces has dimension dd′, since an arbitrary matrix
of size d′ × d has dd′ independent components.

Consider an arbitrary set of operation elements {Ej}. Let us define the matrix:

Wjk = Tr(E†
jEk). (29)

This matrix W is Hermitian, and its rank is at most dd′, as it is defined by at most
dd′ linearly independent operators in the space of d′ × d matrices.

By the spectral theorem, there exists a unitary matrix u such that:

uWu† = Λ, (30)

where Λ is diagonal with at most dd′ nonzero entries. Defining a new set of operation
elements:

Fj =
∑
k

ujkEk, (31)

we obtain an equivalent operator-sum representation:

E(ρ) =
∑
j

FjρF
†
j . (32)

Since W has rank at most dd′, there are at most dd′ nonzero elements in the new set
{Fj}. Thus, we conclude that any quantum operation E mapping a d-dimensional
input space to a d′-dimensional output space can always be represented using at most
dd′ operation elements, completing the proof.
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4. PROBLEM 4:
Consider a qubit state |ψ⟩ = α |0⟩ + β |1⟩ Suppose phase noise acts on this state,
dephasizing the qubit. This action can be described as a unitary action on the qubit
such that the rotations RZ(θ) act on the qubit according to uniform distribution over
θ. Obtain the resulting density matrix. Further, suppose that the longitudinal and
tranverse relaxation times of the qubit are T1 and T2 , respectively. Obtain the final
density matrix as a function of all the given parameters, and physically interpret your
results geometrically over the Bloch sphere. How do you generalize this setup for a
composite system when the qubits are in (a) product state and (b) entangled state?
You need to bring in the relaxation time parameters to the composite system carefully
within the density matrix formulation. This gives you an idea what happens when the
qubits are not identical and what it takes to control relaxation times.

Solution:
Consider a qubit in the state:

|ψ⟩ = α |0⟩+ β |1⟩ . (33)

When phase noise acts on the qubit, the unitary operation is given by a random rotation
about the z-axis:

RZ(θ) = e−iθZ/2, (34)

where θ is uniformly distributed over [0, 2π]. The initial density matrix of the qubit is:

ρ = |ψ⟩ ⟨ψ| =
[
|α|2 αβ∗

α∗β |β|2
]
. (35)

Applying phase noise, we compute:

ρ′ =

∫ 2π

0

RZ(θ)ρR
†
Z(θ)

dθ

2π
. (36)

Since RZ(θ) applies a phase shift, the off-diagonal elements accumulate a phase factor:

ρ′ =

∫ 2π

0

[
|α|2 αβ∗e−iθ

α∗βeiθ |β|2
]
dθ

2π
. (37)

The integral eliminates off-diagonal terms, yielding:

ρ′ =

[
|α|2 0
0 |β|2

]
. (38)

Thus, phase noise leads to dephasing, removing quantum coherence.

Effect of longitudinal (T1) and transverse (T2) relaxation times. The initial density
matrix is

ρ(0) =

[
|a|2 ab∗

a∗b |b|2
]
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i) Longitudinal relaxation (T1) - energy decay

- This accounts for the relaxation of the excited state |1⟩ to the ground state |0⟩ - The
probability of |1⟩ decays exponentially with ‘t’:

p1(t) = |b|2e−t/T1

Total probability is equal to 1, we have

p0(t) = |a|2 + |b|2(1− e−t/T1)

ii) Transverse relaxation (T2) - Decoherence - This accounts for the decay of the off-
diagonal terms in S(0), which represent quantum coherence - The coherence terms
decay as

ρ01(t) = ab∗e−t/T2

ρ10(t) = a∗be−t/T2

the density matrix at time ‘t’ is

ρ(t) =

[
|a|2 + |b|2(1− e−t/T1) ab∗e−t/T2

a∗be−t/T2 |b|2e−t/T1

]

⇒ ρ(t) =

[
1− |b|2e−t/T1 ab∗e−t/T2

a∗be−t/T2 |b|2e−t/T1

]
The term ρ00(t) can be rewritten as

1 + (|a|2 − |b|2)e−t/T1 + (1− e−t/T1)

2

and ρ11(t) can be rewritten as

1− (|a|2 − |b|2)e−t/T1 − (1− e−t/T1)

2

Geometric interpretation on the Bloch sphere:

Comparing ρ(t) with
1

2
(I + rxX + ryY + rzZ)

we obtain
rx = Re (a∗b) e−t/T2

ry = Im (a∗b) e−t/T2

rz =
(
|a|2 − |b|2

)
e−t/T1 +

(
1− e−t/T1

)
We can draw the following conclusions

(a) The off-diagonal terms ρ01(t) and ρ10(t) shrink as e−t/T2 , meaning the Bloch vector
components rx and ry decay towards zero.
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(b) This corresponds to a shrinking of the Bloch vector in the xy-plane, reducing the
phase coherence of the qubit.

(c) The diagonal terms shift towards 1, resulting in rz → 1.

(d) This corresponds to the Bloch vector moving vertically towards the north pole
(ground state |0⟩).

In conclusion,

(i) T1 governs the relaxation towards the ground state, reducing the probability am-
plitude of |1⟩.

(ii) T2 governs the loss of coherence, causing the qubit to become classically mixed
rather than maintaining superposition.

(iii) This captures the irreversible loss of quantum information due to decoherence and
energy dissipation.

Generalisation to composite systems

For Product state Consider the initial state of a product state

ρ(0) = ρA(0)⊗ ρB(0)

where,

ρA(0) =

[
|aA|2 aAb

∗
A

a∗AbA |bA|2
]

ρB(0) =

[
|aB|2 aBb

∗
B

a∗BbB |bB|2
]

ρ(0) =


|aA|2|aB|2 |aA|2aBb∗B aAb

∗
A|aB|2 aAb

∗
AaBb

∗
B

|aA|2a∗BbB |aA|2|bB|2 aAb
∗
Aa

∗
BbB aAb

∗
A|bB|2

a∗AbA|aB|2 a∗AbAaBb
∗
B |bA|2|aB|2 |bA|2aBb∗B

a∗AbAa
∗
BbB a∗AbA|bB|2 |bA|2a∗BbB |bA|2|bB|2


Similar to the previous case, we obtain

ρi(t) =

[
|ai|2 + |bi|2(1− e−t/T1i) aib

∗
i e

−t/T2i

a∗i bie
−t/T2i |bi|2e−t/T1i

]
i ∈ A,B

ρ(t) = ρA(t)⊗ ρB(t)

We have the following diagonal terms of ρ(t):

ρ00(t) =
[
|aA|2 + |bA|2(1− e−t/T1A)

] [
|aB|2 + |bB|2(1− e−t/T1B)

]
ρ11(t) =

[
|aA|2 + |bA|2(1− e−t/T1A)

] [
|bB|2e−t/T1B

]
ρ22(t) =

[
|bA|2e−t/T1A

] [
|aA|2 + |bA|2(1− e−t/T1A)

]
12



ρ33(t) =
[
|bA|2e−t/T1A

] [
|bB|2e−t/T1B

]
And the off-diagonal terms are of the form:

ρij(t) = (K1e
−t/Tm1,n1 )(K2e

−t/Tm2,n2 )

for i ̸= j , m1,m2 ∈ {1, 2} , n1, n2 ∈ {A,B}.
Interpretation of the density matrix evolution

• The diagonal elements represent probabilities of measuring each computational
basis state |00⟩ , |01⟩ , |10⟩ , |11⟩
– They increase towards |00⟩ over time as relaxation drives each qubit to the

ground state.

– The rate depends on T1A and T1B, i.e., if the qubits are not identical, they
relax at different speeds.

• The off-diagonal elements represent coherence.

– These decay exponentially at rates T2A and T2B, i.e., the degree of quantum
interference decreases over time.

• If both T1A, T1B → ∞, the qubits stay in their initial state.

Bloch vector interpretation

• Each qubit independently shrinks towards the north pole |0⟩ at rates T1A, T1B.
• The Bloch vector lengths decrease, reflecting the loss of coherence at rates T2A, T2B.

• Unequal relaxation times distort the Bloch sphere asymmetrically.

Entangled state

Consider the initial state |Ψ(0)⟩ defined by

|Ψ(0)⟩ = 1√
2
(|00⟩+ |11⟩) (Bell state)

The corresponding density matrix is

ρ(0) = |Ψ(0)⟩ ⟨Ψ(0)| =


1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2


This state exhibits maximal quantum coherence due to the off-diagonal terms. Assume
the evolution of the following form:

ρ(t) = EA ⊗ EB(ρ(0))
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where

E(ρi(t)) =
[
|ai|2 + |bi|2(1− e−t/T1i) aib

∗
i e

−t/T2i

a∗i bie
−t/T2i |bi|2e−t/T1i

]
, i ∈ {A,B}

as derived in the previous case.

ρ(t) =


1+e−t/T1Ae−t/T1B

2
0 0 e−t/T2Ae−t/T2B

0 0 0 0
0 0 0 0

e−t/T2Ae−t/T2B 0 0 1−e−t/T1Ae−t/T1B

2


Interpretation

• The probability amplitude of |00⟩ increases over time, i.e., the system relaxes to
|00⟩.

• The probability amplitude of |11⟩ decays at a rate of e−t/T1Ae−t/T1B .

• If T1A ̸= T1B, the relaxation is asymmetric, meaning one qubit may relax faster
than the other.

Coherence

• The coherence term e−t/T2Ae−t/T2B decays exponentially.

• Faster dephasing (small T2) destroys entanglement quickly.

• If T2A ̸= T2B, one qubit loses coherence faster, destroying the entanglement earlier.

Interpretation on Bloch Sphere

• The system shrinks towards the north pole (|00⟩).
• The Bloch vector length decreases, representing loss of quantum coherence.

• The degree of entanglement decreases over time, transitioning into a mixed state.

Acknowledgement: The solutions are prepared by Sudhir Kumar Sahoo and Abhi Kumar
Sharma.
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