Indian Institute of Science

Mathematical Methods and Techniques in Signal Processing

Instructor: Shayan Srinivasa Garani

Home Work \#1, Spring 2024
Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=$ \# days late
Assigned date: Jan. $24^{\text {th }}, 2024$
Due date: Feb. $6^{\text {th }}, 2024$, in class

Problem 1: Consider all points uniformly and jointly distributed within a sphere in \mathbb{R}^{3} centered at the origin and radius a units. Obtain the marginal densities and the covariance matrix analytically. Are the random variables statistically independent? Justify. Write a software code to verify your analytical results through alternative means and validate.
(10 pts.)
Problem 2: Consider a causal IIR filter $H(z)=\frac{1}{1+\sum_{n=1}^{N} h_{n} z^{-n}}$. Show that $H(z)$ is BIBO stable if $D(1)>0$ and $D(-1)>0$, where $D(z)$ is the denominator of $H(z)$. For the special case of a 2 nd order filter, with real h_{1} and h_{2} prove that $H(z)$ is BIBO stable iff h_{1} and h_{2} are restricted to lie within a triangular region.
(10 pts.)
Problem 3: Consider the 3rd order IIR filter $H(z)=\frac{1}{1-0.95 z^{-1}+2.85 z^{-3}}$. The following questions are related to this.
(1) Obtain the state space representation of this system. Using the derived state space representation, write a software code to obtain the response of the system to the input $x[n]=0.25 \cos \left(\frac{\pi}{2} n\right), n \geq 0$. Comment on the filter stability based on the state space representation.
(2) Suppose $x[n]$ is a Bernoulli random process with $P(x[n]=0)=p$ for all times $n \geq 0$, obtain the output power spectral density.
(3) A digital designer would like to quantize the coefficients of this filter using B bits of precision, which includes the sign bit, a bits for magnitude and the rest for fractional bits. Assuming $B=4, a=1$, obtain the filter coefficients after rounding. As a result of this roundoff, what is the variance of the quantization error? Through a pole-zero plot, post quantization, where do the new poles lie w.r.t the original ones?
(15 pts.)
Problem 4: Consider three signals $s_{1}(t)=u(t)-2 u(t-1)+u(t-2), s_{2}(t)=u(t)-u(t-1)$ and $s_{3}(t)=u(t-1)-2 u(t-2)+u(t-3)$ with prior probabilities $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{6}$, respectively. Suppose these signals are used for a point-to-point transmission.
(1) Represent the signals through an appropriate signal geometric setup. What is the signal dimension?
(2) Suppose a noisy Gaussian cloud $\mathcal{N} \sim\left(0, \sigma^{2}\right)$ acts independently on the signal coordinates during transmission, derive an expression for the probability of misclassification of the received signals under the MAP rule.

Problem 5: An analog is sampled at $20 \mathrm{~Kb} / \mathrm{s}$ and reconstructed perfectly using an ideal brickwall filter whose digital cutoff frequency is $\frac{\pi}{8}$.
(1) What can you say about the maximum frequency content in the original analog signal?
(2) Write an expression for the reconstructed analog signal from the sampled values.

Problem 6 (Extra credit): Read the material on superoscillatory signals and write a short note on this significance. Provide your own example of a superoscillatory signal.

