
E9 253: Neural Networks and Learning Systems - I Fall 2021

Homework #1
Course Instructor: Prof. Shayan Srinivasa Garani Scribes: Kamal Bhatt, Sujeet Kumar Maurya

Question 1:(a) How would you separate all integers modulo N on a real line using linear decision boundaries?
(b) Explain in your own words (no more than 50 words) the stochastic resonance effect in neurons.

Solution(a): The set of integers can be partitioned based on the modulo N congruence, for example:

[0] = {0, N, 2N, . . . } = {NZ}.

[1] = {1, N + 1, 2N + 1, . . . } = {NZ + 1}.

[2] = {2, N + 2, 2N + 2, . . . } = {NZ + 2}.

[3] = {3, N + 3, 2N + 3, . . . } = {NZ + 3}.

.

.

[N − 1] = {N − 1, 2N − 1, . . . } = {NZ + (N − 1)}.

So, we have a natural way to classify the set of integers modulo N into N classes.
Consider any a ∈ Z then ‘a’ can be expressed as:

a ≡ b mod N , where b ∈ {0, 1, 2, . . . , N − 1}.

So, we now consider the transformation of f : R→ R2

f(a) 7→ (a, b)

Now we can define our linear decision boundaries. The linear decision boundaries are the set

{y = i− 0.5|1 ≤ i ≤ N − 1}.

Solution(b): Stochastic resonance effect: In most cases, random noise leads to a drop in the quality of
signal transmission, detection and performance. However, at times an increase in unpredictable fluctuations
might instead increase the signal-to-noise ratio (SNR), particularly in neurons. This counter-intuitive effect is
known as stochastic resonance effect. In other words, it is a phenomenon in which a signal that is normally
too weak to be detected can have its detection drastically improved by adding noise containing a broad
frequency range. Those noise frequencies that match with corresponding frequencies in the original signal
resonate with the neural system, amplifying the original signal.

Question 2: Sketch the architecture of a single hidden layer recurrent network with 2 input nodes, 2 hidden
nodes and an output node. Self loops and lateral connections are not allowed. Assuming the stochastic neu-
ron model, write down the equations for the signals at the output of each neuron. Indicate all the necessary
variables carefully.

Solution: In a recurrent neural network, the outputs are used as a feedback to the neurons of the pre-
vious layer. So,
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Figure 2.1: Network architecture.

It is to be seen that the above recurrent neural network has no self-loops or lateral connections.
Let v1(t), v2(t), v3(t), v4(t) and v5(t) be outputs of each neuron respectively. Similarly, let u1(t), u2(t), u3(t), u4(t)
and u5(t) be the inputs of each neuron. We have

vi(t) = ϕ(ui(t)) (2.1)

Let x1(t), x2(t), x3(t), x4(t) and x5(t) be the state/firing of the neurons respectively given by

xi(t) =

{
1, with probability = pi(t)

0, with probability = 1− pi(t)

where pi(t) = f(ui, t) =

(
1

1 + eui/t

)
u1 and u2 are two inputs.

u3(t) = x1(t)v1(t) + x2(t)v2(t) + x5(t− 1)v5(t− 1) (2.2)

u4(t) = x1(t)v1(t) + x2(t)v2(t) + x5(t− 1)v5(t− 1) (2.3)

u5(t) = x3(t)v3(t) + x4(t)v4(t) (2.4)

Equations (2.1), (2.2), (2.3) and (2.4) are the state equations.
The signals have been written without considering weights; if they are considered, they will be added as
coefficients to the terms of the equations (2.1), (2.2), (2.3) and (2.4).

Question 3: The output response of a certain device obeys the law y =
x

a+ bx
, where a, b are positive

constants. You make measurements (xi, yi) over N data points that could be potentially noisy. Nothing
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is known about the statistics of the noise. You are required to fit the parameters a and b empirically from
the data. How would you accomplish this? Provide explicit expressions for your estimates of a and b using
techniques learnt in the class.

Solution: The output response of a certain device obeys the law

y =

(
x

a+ bx

)
.

Let Y =

(
1

y

)
and X =

(
1

x

)
.

From the above law, (
1

y

)
=

(a
x

+ b
)
.

=⇒ Y = aX + b.

Also, given that (xi, yi), 1 ≤ i ≤ N data points could be potentially noisy, we formulate

Y = aX + b+ E ,

where E is the sample noise. So, the residual square sum (RSS) is computed as

RSS =

N∑
i=1

(Yi − (aXi + b+ εi))
2,

where Yi =
1

yi
and Xi =

1

xi
.

Goal: Minimize RSS over a, b
So, taking the partial derivatives w.r.t a and b and setting them to zero, we have

∂(RSS)

∂a
= 0 and

∂(RSS)

∂b
= 0.

=⇒ ∂(RSS)

∂b
= 0.

=⇒ −2
N∑
i=1

(Yi − (aXi + b+ εi)) = 0.

=⇒
N∑
i=1

Yi = Nb+ a
N∑
i=1

Xi + a
N∑
i=1

εi.

=⇒ b =
1

N

N∑
i=1

Yi − a
1

N

N∑
i=1

Xi −
1

N

N∑
i=1

εi.

b = Y − aX − E (2.5)

where, Y =
1

N

N∑
i=1

Yi =
1

N

N∑
i=1

1

yi
, X =

1

N

N∑
i=1

Xi =
1

N

N∑
i=1

1

xi
and E = mean(E).

Now,
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∂(RSS)

∂a
= −2

N∑
i=1

(Yi − (aXi + b+ εi))Xi = 0.

=⇒
N∑
i=1

XiYi = a
N∑
i=1

Xi
2 +

N∑
i=1

εiXi + b
N∑
i=1

Xi.

Putting the value of b from equation (2.5),

=⇒
N∑
i=1

XiYi = a
N∑
i=1

Xi
2 + (Y − aX − E)

N∑
i=1

Xi +
N∑
i=1

εiXi.

=⇒ a(
N∑
i=1

Xi
2 −X

N∑
i=1

Xi) =
N∑
i=1

XiYi − Y
N∑
i=1

Xi + E
N∑
i=1

Xi −
N∑
i=1

εiXi.

a =

N∑
i=1

XiYi − Y
N∑
i=1

Xi + E
N∑
i=1

Xi −
N∑
i=1

εiXi

N∑
i=1

Xi
2 −X

N∑
i=1

Xi

(2.6)

Now, numerator of equation (2.6) can also be written as

N∑
i=1

XiYi −N
1

N
Y

N∑
i=1

Xi +NE 1

N

N∑
i=1

Xi −
N∑
i=1

εiXi.

=⇒
N∑
i=1

(Yi − εi)Xi −NX Y +NX E .

=⇒
N∑
i=1

Xi(Yi − εi)− (Y − E)
N∑
i=1

Xi −X
N∑
i=1

(Yi − εi) +
N∑
i=1

X(Y − E)

=⇒
N∑
i=1

(Xi −X)((Yi − εi)− (Y − E)).

=⇒
N∑
i=1

(Xi −X)((Yi − Y )− (εi − E)).

Similarly, denominator of equation (2.6) can be written as

N∑
i=1

Xi
2 −X

N∑
i=1

Xi =
N∑
i=1

Xi
2 −NX2

=
N∑
i=1

(Xi −X)2.

Hence, equation (2.6) can be written as

a =

N∑
i=1

(Xi −X)((Yi − Y )− (εi − E))

N∑
i=1

(Xi −X)2
(2.7)
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Putting the value of a in equation (2.5)

b = Y −

N∑
i=1

(Xi −X)((Yi − Y )− (εi − E))

N∑
i=1

(Xi −X)2
X − E (2.8)

Note: Above fitting of data is valid assuming xi, yi 6= 0 ∀ i.

Question 4: Consider a 3-class classification problem, comprising labels wi, i = 1, 2, 3 corresponding to data
points distributed as shown in Figure 1 supported over [-3, 0], [-1.5, 1.5] and [0, 3] respectively. The corre-
sponding apriori probabilities for the classes are 1

2 , 13 and 1
6 . Are the points linearly separable? Determine

the optimum thresholds and provide a Bayes decision rule to decide the label for a point randomly sampled
from the interval [-3, 3]. Compute the probability of misclassification error.

Solution: The apriori probabilities for classes w1, w2, w3 are

P(w1)=
1

2
,P(w2)=

1

3
,P(w3)=

1

6
.

The general form of triangular distribution over the support [a,c] is given by

P(x) =


0, (x < a)

2(x− a)

(b− a)(c− a)
, (a ≤ x < c)

2(b− x)

(b− a)(b− c)
, (c ≤ x ≤ b)

Hence, the conditional likelihoods given the classes w1, w2, w3 is computed as,

P(x | w1) =


4(x+ 3)

9
, x ∈

(
−3,− 3

2

)(
−4x

9

)
, x ∈

(
− 3

2 , 0
)

P(x | w2) =


2(2x+ 3)

9
, x ∈

(
− 3

2 , 0
)

2(3− 2x)

9
, x ∈

(
0, 32
)

P(x | w3) =


(

4x

9

)
, x ∈

(
0, 32
)

4(3− x)

9
, x ∈

(
3
2 , 3
)

For threshold calculations,

1. In

[
−3

2
, 0

]
, for overlapping region for w1 and w2;

P (x|w1).P (w1) = P (x|w2).P (w2).

=⇒ −
(

4x

9

)(
1

2

)
=

(
2(2x+ 3)

9

)(
1

3

)
.

=⇒ x = −
(

3

5

)
.
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2. Similarly in

[
0,

3

2

]
, for overlapping region for w2 and w3,

P (x|w2).P (w2) = P (x|w3).P (w3).

=⇒
(

2(3− 2x)

9

)(
1

3

)
=

(
4x

9

)(
1

6

)
.

=⇒ x = 1.

So, the decision boundaries for classification would be

for x ∈
[
−3, − 3

5

]
→ w1

for x ∈
[
−3

5
, 1

]
→ w2

for x ∈ [1, 3] → w3

Probability of misclassification error:

P (error) =

∫ − 3
5

− 3
2

P (x|w2).P (w2) dx+

∫ 0

− 3
5

P (x|w1).P (w1) dx+

∫ 1

0

P (x|w3).P (w3) dx+

∫ 3

1

P (x|w2).P (w2) dx.

By substituting the values, we have

P (error) =

∫ − 3
5

− 3
2

2(3− 2x)

9

1

3
dx+

∫ 0

− 3
5

(
−4x

9

)
1

2
dx+

∫ 1

0

4x

9

(
1

6

)
dx+

∫ 3

1

2(3− 2x)

9

(
1

3

)
dx.

P (error) = 0.156


