
NNLS Mid-term Exam Solutions
Hariharan Ravishankar

Problem1: A student claims shuffling of data will always help improve online and batch
mode perceptron learning. Justify if the claim is true or false.

I will provide my arguments for batch and online mode learning separately.

Batch-Mode: Let 𝜃𝜃 is the set of parameters to learnt in the neural network and if 𝐸𝐸𝑋𝑋(𝜃𝜃) is the loss
function to be optimized and 𝑋𝑋 is the set of inputs. Since the loss function is non-convex in 𝜃𝜃, there
will be numerous local minima, some of them might be more preferrable over the others. If 𝑋𝑋, is
presented without mini-batching or shuffling, it is quite likely that gradient descent algorithm can
get stuck in one of these local minima. By shuffling the data and presenting them in mini-batches
{𝑋𝑋𝑖𝑖}, the gradient descent algorithm gets to explore loss surfaces corresponding to 𝐸𝐸𝑋𝑋𝑖𝑖(𝜃𝜃). Even
if this is a local minimum, the learning will proceed with next mini-batch and so on. Thus, shuffling,
and mini-batch presentations help gradient descent-based algorithm explore diverse trajectories
of loss surfaces, thereby avoiding getting stuck in local minima of the non-convex loss function.

It should be noted that, if mini batch is full-sized that is, if 𝑋𝑋𝑖𝑖 = 𝑋𝑋, shuffling will not have any
impact. Since at every iteration, gradient descent is seeing all the samples, shuffling will not have
any impact. In my experiments, I have observed that in full-batch experiments, the results did not
change with shuffling, if I froze other levers like random weight initializations.

Online-mode: Since, online learning algorithm attends to the most recent sample, presenting data
without shuffling could add bias in learning over the recent samples. For example, if data consists
of 𝑀𝑀 classes, if the samples are provided class-wise in sequential manner, it is possible that neural
network could “forget” the earlier classes. In such scenarios, random shuffling will ensure that
samples belonging to earlier classes are also replayed to the neural network periodically so that
network can learn/remember these classes. In my HW1, I observed that providing 3-cluster data
in sequential fashion in online-mode, did not lead to convergence. However, random shuffling of 3
classes of data, allowed the network to classify all the classes better.

The biggest advantage of online learning is adaptivity (i.e), it can respond to short-term non-
stationary changes. If our data consists of such “drifts”, that is the distribution changes over time,
shuffling should not be pursued. For example, a hospital ward occupancy prediction problem will
depend on the statistics related to recent outbreak of pandemic compared to a normal year. In
such cases, we want the network to learn or be biased to the recent samples. In short, in non-
stationary changing environments and problems, data shuffling may not always produce better
results because of inability to model the “drift” the distributions.

Summary:
• Shuffling and mini-batch presentations will generally help in gradient-descent based

weight optimization algorithms to navigate through the non-convex cost surface.
• Shuffling will not make any difference in full-batch gradient descent.
• In online learning, non-sequential presentations of different class data will help network

to learn all classes sufficiently, as against possible forgetting in sequential presentation.
• However, if there is “drift” in data (i.e) non-stationary inputs, shuffling the data will not

allow the network to learn the recent samples better. Hence, should be avoided.

Problem 2: S. Haykin 4.14

Temporal Processing

Output of neuron j is defined by

 , where is activation function.

Here is the convolution of and time window , which is defined as

 are the parameters from to synapse i to neuron j, to be learnt using back propagation.

Let us define variables which is the local receptive field at neuron j such that

 where is the number of hidden units in previous layer

Convolution with Gaussian time-window

Noting that , where ∗ is the convolution operator.

 , where is the convolution index.

Let E be the loss function associated with the network and we will assume backpropagated error
gradients are available till (i.e) is known. Based on this assumption, we can proceed

backwards to derive backprop equations for

Derivatives

Using chain rule of derivatives,

 = , where is derivative of activation function

The rest of the derivatives will be expressed in terms of

Similarly,

(1)

(2)

Proceeding similarly for ,

Derivatives of w.r.t and

Given definition of , we proceed to find and

=

Similarly,

(3)

(4)

(5)

Back-propagation equations Combining the derivatives developed earlier, we are ready to write
backpropagation update equations using chain rule of derivatives.

𝑤𝑤ji (𝑡𝑡 + 1 ) = 𝑤𝑤ji (𝑡𝑡) −  𝜂𝜂 ∗
𝛿𝛿𝐸𝐸 
𝛿𝛿𝑤𝑤ji 

 

𝜎𝜎 ji (𝑡𝑡 + 1 ) = 𝜎𝜎 ji (𝑡𝑡) −  𝜂𝜂 ∗
𝛿𝛿𝐸𝐸 
𝛿𝛿𝜎𝜎 ji 

𝜏𝜏 ji (𝑡𝑡 + 1 ) = 𝜏𝜏 ji (𝑡𝑡) −  𝜂𝜂 ∗
𝛿𝛿𝐸𝐸 
𝛿𝛿𝜏𝜏  ji 

 

All the derivatives needed for update equations are available in earlier equations.

Demonstration on single hidden layer network

Consider 1 hidden layer network with temporal processing units.

, where

, and

Let and gradient with each output neuron be

Let be the local receptive fields of first and second layer neurons.

Let there be in input, hidden and output units respectively.

Based on the equations derived, the update equations are as follows.

 =

 =

(6)

For sigmas,

For taus,

This completes the derivation for generic and single hidden layer network for temporal

processing network.

Problem 3: Multi-class logistic regression - Iris Dataset

Update Equations summary:

Let be the N sample training pairs belonging to M=3 classes in IRIS Dataset. For every
class, we learn a weight vector which is length vector accounting for bias term. The
likelihood of a sample belonging to class is given by softmax function.

where is the augmented vector.

Encoding as 1-of-M binary vector and denoting it by with 1 in location if . Let T be
the NxM matrix composed of .

• Data likelihood is given by

• Taking Negative logarithm and denoting it by E,

• Gradient w.r.t was derived as (in HW2),

• Update equation for weights is given by

 𝑤𝑤𝑗𝑗 = 𝑤𝑤𝑗𝑗 + 𝜂𝜂 ∗ Δwj

E - (1)

The derived equations were implemented using matlab and were tested on IRIS dataset.
Experiments, results summary, outcomes and observations from cross validation
experiments are shared below.

Results and Discussion

 Figure 2 Error curve over epochs

 Figure 1 Training Confusion Matrix

 Figure 2 Testing Confusion Matrix

Observations

1. Training accuracy of 98.3% and testing
accuracy of 96.7 % was achieved with
multi-class logistic regression model.

2. It should be noted that similar
performance was achieved with MLP in
HW2 problem.

3. Samples from second class, Iris Versicolor
were misclassified.

4. There were two misclassifications in
training and one in testing, respectively.

5. For the chosen parameter of learning
rate and mini-batch size, the error curve
is shown in Fig 2, which depicts smooth
convergence over epochs.

Cross-validation Experiments

I proceeded to evaluate the algorithm in cross-validation mode with 5-fold validation strategy.

Problem 4: Simon Haykin 4.17

Pattern classification of "equiprobable" overlapping two-dimensional Gaussian distributed
patterns 𝒞𝒞1 and 𝒞𝒞2 . The conditional probability density functions are given by

Derivation of optimal Bayesian decision boundary

Optimal decision boundary is defined by the likelihood test

 Λ(𝒙𝒙) = 𝑝𝑝𝒙𝒙|𝒞𝒞1�𝒙𝒙�𝒞𝒞1�
𝑝𝑝𝒙𝒙|𝒞𝒞2 �𝒙𝒙�𝒞𝒞2�

 (1)

The threshold for classification is determined by ratio of priors and hence 𝜆𝜆 = 1. Equating (1) to
1, taking logarithm on both sides and utilizing conditional distributions defined earlier, we get

log 𝑝𝑝𝒙𝒙|𝒞𝒞1
(𝒙𝒙|𝒞𝒞1)− log𝑝𝑝𝒙𝒙|𝒞𝒞2

(𝒙𝒙|𝒞𝒞2) = 0

−
1
2

 (𝑥𝑥12 + 𝑥𝑥22) − log �
1
4
� +

(𝑥𝑥1 − 2)2 + 𝑥𝑥22

8
= 0

�𝑥𝑥1 +
2
3

 �
2

+ 𝑥𝑥22 = (2.34)2

Optimal decision boundary is a circle centered at (−2
3

, 0) with radius 2.34 .

Observations from cross-validation experiments

1. Average training and test set accuracies were 97.5% and 97.3% respectively
averaged over the 5-folds of cross-validation

2. This demonstrates that algorithm generalized well on this dataset
3. It was also observed that algorithm converged with similar results for other hyper-

parameters like 𝜂𝜂. I did not see performance degradation or improvement with 𝜂𝜂
varied between {0.01, 0.1, 0.5}.

Class 𝒞𝒞1: 𝑝𝑝𝒙𝒙|𝒞𝒞1(𝒙𝒙|𝒞𝒞1) ~ 𝒩𝒩(𝝁𝝁𝟏𝟏 ,𝜎𝜎12 𝑰𝑰), 𝝁𝝁𝟏𝟏 = [0, 0]𝑇𝑇 ,𝜎𝜎12 = 1

Class 𝒞𝒞2: 𝑝𝑝𝒙𝒙|𝒞𝒞2(𝒙𝒙|𝒞𝒞2) ~ 𝒩𝒩(𝝁𝝁𝟐𝟐 , 𝜎𝜎22 𝑰𝑰), 𝝁𝝁𝟐𝟐 = [0, 0]𝑇𝑇,𝜎𝜎12 = 4

a) Calculating the theoretical probability of misclassification

Since the priors are equal, the theoretical probability of misclassification is given by,

.

The decision boundary is a circle with centre at and radius 2.34,

Regions of misclassification for Class 1 is therefore, > 0 and for class 2 region of
misclassification is < 0.

Since we cannot compute these integrals analytically, I computed the misclassification errors by
numerical evaluation. I considered two approaches a) Numerical integration evaluation in matlab
b) Relative frequency approach (Monte Carlo estimates). Both methods gave same theoretical
probability of misclassification error.

It was found that = 0.1050 and = 0.2648. Hence = 0.1850

Neural Network Experiments

Gaussian Data generation:

I used matlab’s mvrnd function to generate samples for two classes, with parameter “samples”.

 Figure 3 Visualizing generated samples

Observations

• The two classes overlap significantly.
• The visualization explains intuitively

the misclassification probability of
0.1850 computed earlier.

• The visualization also gives clues on
why optimal decision surface will be
a circle, as derived earlier.

b) Identifying optimal number of hidden neurons

I configured the MLP network with one hidden layer, with sigmoid activations for this problem.
For this experiment, I froze learning rate parameter = 0.1 and momentum constant = 0. The
first experiment involved experimenting with 2 or 4 hidden neurons.

Since, every experiment is one instantization of the learning process, I decided to average the
results across 10 runs as shown above, with random initializations and random permutations of
mini batches. The table below shows comparisons of results.

Training Set
Size

Number of
Epochs

Number of
hidden neurons

Probability of
misclassification

500 320 2 0.200

500 320 4 0.192

2000 80 2 0.194

2000 80 4 0.191

8000 20 2 0.198

8000 20 2 0.190
Table 1 Comparison of 2 hidden neurons versus 4 hidden neurons averaged over 10 runs

To evaluate probability of misclassification, I generated new samples and tested the learnt
network’s prediction on those samples, whose misclassification accuracies are shown in table
above. It can be noted that for all the 3 experiments, 4 hidden neuron network provides slight
improvement over the 2 hidden neuron configurations. Also, it should be noted that, performance
of both the configurations is close to the theoretical misclassification error of 0.1850.

I also visualized the decision surface of the 2-hidden neuron network and the 4-hidden neuron
network, which is shown below. It was observed that the 4-hidden neuron network provided a
decision surface close to resembling the circle derived earlier.

 Figure 4 Decision surface of 2 hidden neurons

Observations

• Meshgrid was created and classified
with learnt neural network.

• As can be seen, the decision surface is
not “circle” as derived theoretically.

• However, it still is a reasonably good
decision surface explaining acceptable
probability of misclassification.

Figure 5 Decision surface for 4 hidden neuron configuration

Based on lower misclassification probabilities demonstrated in Table 1, I select 4 hidden
neuron configurations as the optimal neural network architecture. Remainder of the
report, I will be reporting experiments with 4 hidden neurons configuration. Also, rest
experiments will be with {500 } samples and {320} epochs.

c) Identifying optimal learning rate and momentum constant
The DOE for this experiment involved varying learning rate 𝜂𝜂 ∈ {0.01, 0.1, 0.5} and momentum
constant 𝛼𝛼 ∈ {0.0, 0.1, 0.5}

Learning Rate Momentum
constant

Probability of
misclassification

0.01 0 0.194

0.01 0.1 0.189

0.01 0.5 0.190

0.1 0 0.192

0.1 0.1 0.188

0.1 0.5 0.191

0.5 0 0.199

0.5 0.1 0.197

0.5 0.5 0.209
Figure 6 Exploration of best learning rate and momentum constant for 4 hidden neuron networks averaged

over 10 runs with random permutations and initializations

Observations

• 4 hidden neuron configuration
produced a better decision surface
than 2 hidden neuron network.

• As can be seen, decision surface is
not a perfect circle, but this is a
better decision surface than what
was achieved with 2 hidden neuron
network.

d) Evaluating optimal configuration
• From my experiments, the optimal configuration turned out to be 4 hidden neurons,

learning rate = 0.1 and momentum constant 0.1.
• The misclassification error probability was 0.188 which is closer to theoretical value of 0.185.
• The decision surface of this configuration is shown below.

 Figure 7 Decision surface for the best configuration

Conclusions: Multi-layer perceptron was able to generate non-linear decision boundaries for the
two-class bivariate gaussian densities as demonstrated here. MLP came very close to matching the
theoretical optimum misclassification probability, with the best configuration achieving probability
of error of 0.188 against theoretical value of 0.185.

Observations

• Learning rate played a more crucial role than momentum constant.
• As can be seen in the table, higher learning rate of 0.5, lead to the 3 worst misclassification

errors. This highlights problem of not capturing the local minima on the cost surface due to
high learning rate.

• Best results were obtained for learning rate = 0.1 and momentum constant of 0.1.
• The second best Pe=0.189 was with learning rate =0.01 and momentum constant of 0.1.
• As can be noted in table, with slow learning rate (0.01) and zero momentum (first row),

network could not produce good misclassification accuracy.
• However, with non-zero momentum of 0.1 and 0.5, network was able to learn and produce

good results for both learning parameters 0.01 and 0.1.
• It can be concluded that higher learning rate will lead to instability in learning while lower

learning rate will lead to inability to learn. However, a reasonable learning rate aided by
non-zero momentum constant can produce satisfactory results, as demonstrated above.

Observations

• The best configuration neural
network produced the best decision
surface of all other networks.

• As can be seen, decision surface is
almost a circle, centered around
[-2/3, 0] with radius = 2.34.

	NNLS Mid-term Exam Solutions
	Hariharan Ravishankar
	Problem1: A student claims shuffling of data will always help improve online and batch mode perceptron learning. Justify if the claim is true or false.
	I will provide my arguments for batch and online mode learning separately.
	Batch-Mode: Let 𝜃 is the set of parameters to learnt in the neural network and if ,𝐸-𝑋.(𝜃) is the loss function to be optimized and 𝑋 is the set of inputs. Since the loss function is non-convex in 𝜃, there will be numerous local minima, some of ...
	It should be noted that, if mini batch is full-sized that is, if , 𝑋-𝑖.=𝑋, shuffling will not have any impact. Since at every iteration, gradient descent is seeing all the samples, shuffling will not have any impact. In my experiments, I have obser...
	Summary:
	 Shuffling and mini-batch presentations will generally help in gradient-descent based weight optimization algorithms to navigate through the non-convex cost surface.
	 Shuffling will not make any difference in full-batch gradient descent.
	 In online learning, non-sequential presentations of different class data will help network to learn all classes sufficiently, as against possible forgetting in sequential presentation.
	 However, if there is “drift” in data (i.e) non-stationary inputs, shuffling the data will not allow the network to learn the recent samples better. Hence, should be avoided.
	Problem 2: S. Haykin 4.14
	All the derivatives needed for update equations are available in earlier equations.
	This completes the derivation for generic and single hidden layer network for temporal processing network.
	Problem 3: Multi-class logistic regression - Iris Dataset
	Problem 4: Simon Haykin 4.17
	Derivation of optimal Bayesian decision boundary
	Optimal decision boundary is defined by the likelihood test
	Λ,𝒙.= ,,𝑝-𝒙|,𝒞-1..,𝒙-,𝒞-1..-,𝑝-𝒙|,𝒞-2.. ,𝒙-,𝒞-2... (1)
	,log- ,𝑝-𝒙|,𝒞-1..,𝒙-,𝒞-1..−,log-,𝑝-𝒙|,𝒞-2..,𝒙-,𝒞-2...= 0.
	−,1-2. ,,𝑥-1-2.+,𝑥-2-2..−,log-,,1-4..+.,,,,𝑥-1.−2.-2.+,𝑥-2-2.-8.=0
	,,,𝑥-1.+,2-3. .-2.+,𝑥-2-2.=,,2.34.-2.
	a) Calculating the theoretical probability of misclassification
	Neural Network Experiments
	b) Identifying optimal number of hidden neurons
	c) Identifying optimal learning rate and momentum constant
	d) Evaluating optimal configuration

