
Neural Networks and Learning Systems : Homework II
Scribed by

Varun Krishna, Praneeth Vonteddu, Shubham Kumar

Question 1.

MultiClass Logistic Regression
Given training samples (xi, yi)

N
i=1 where xi εRd and yi ε {1, 2....K}.

Here, we make a fixed nonlinear transformation of the inputs using a vector of basis functions φ(x).
The resulting decision boundaries are thus linear in feature space φ, and correspond to nonlinear
decision boundary in original x space.

For K classes, we use softmax function instead of logistic sigmoid, also known as softmax regression.

p(Ck|φ) = yk(φ) =
exp(ak)

Σj exp(aj)

where the activations ak = wTk φ , k = {1, 2....K} and the weight vectors wk = [wk1, wk2, ..., wkM]T

and a = {a1, a2, ..., ak}.
We learn a set of K weight vectors {w1, w2, ..., wk}.

These weight vectors can be arranged as a matrix W.

W =


w1

w2

.

.
wk

 =


w11 . . w1M

w2 . . w2M

. . . .

. . . .
wk . . wkM


To estimate the weight vectors we use Maximum likelihood. For estimating maximum likelihood
we need the derivatives of yk with respect to all activations aj . These are calculated as

∂yk
∂aj

= yk(Ikj − yj)

where Ikj are the elements of the identity matrix.

I will represent the classes C1, ..., Ck as one hot vector. This can be done by using 1-of-K coding
scheme in which the target vector tn for a feature vector φn belonging to class Ck is a binary vector,
with all elements zero except for the element k.

Class Ck is a K dimension vector, where Ck = [t1, ..., tk]
T , ti ε 0, 1 .

These class probabilities obey ΣK
k=1 p(Ck) = ΣK

k=1 tk = 1 .

1

Classes have values 1,..,K and we have N labeled samples. Target matrix is a N x K matrix with
elements tnk.

T =


t11 . . t1K
. . . .
. . . .
tN1 . . tNK


The likelihood function can be written as

p(T |w1, .., wK) = ΠN
n=1Π

K
k=1 p(Ck|φn)tnk = ΠN

n=1Π
K
k=1 y

tnk
nk

where ynk = yk(φn) and T is the target matrix.
Taking the negative log-likelihood gives

E(w1, .., wK) = −ln p(T |w1, .., wK) = −ΣN
n=1Σ

K
k=1 tnk ln ynk

This is our objective function, known as Cross entropy function for multi class classification.

Computing Gradient of the error function wrt the parameter vector wj ,

∆wjE(w1, .., wK) = ΣN
n=1 (ynj − tnj)φn

where Σk tnk = 1 is used. This gradient is basically the product of error (ynj − tnj) and feature
vector φn. This gradient has the same form as the sum of squares error for the linear model, and
the cross entropy error for logistic model.

This gradient can be used to formulate a sequential algorithm, in which patterns are presented
one at a time, and weight vector is updated as

w(n+1) = w(n) − η∆En

This completes the solution for Online algorithm.

For Batch Method,
We can use the Newton-Raphson update to obtain the corresponding IRLS algorithm for the multi
class problem. So, we need to evaluate the Hessian matrix of size M x M in which each block j,k is
given by

∆wk
∆wjE(w1, .., wK) = −ΣN

n=1 ynk(Ikj − ynj)φnφTn
The hessian for multi class logistic regression is positive definite. Hence, we can achieve a unique
minimum for error function.

Question 2.

Problem 4.2 : How does the learning-rate parameter η in back-propagation algorithm affect the
trajectory in weight space and the rate of learning ? Is there any method to avoid the danger of
instability of the algorithm?

Solution

Let wkij be the weight connecting the ith neuron of k − 1st layer with jth neuron of the kth layer.

Update Equation :

wkij(t) = wkij(t− 1) − η ∂E
∂wk

ij(t−1)

η is the learning rate

Effect of having a very small learning rate :

If η is small , the correction term η ∂E
∂wk

ij(t−1)
will also be small, leading to wkij(t) ≈ wkij(t − 1).

Thus convergence is slow and weight trajectory takes small strides at each updates.

Effect of having a large value of learning rate :

• Having a reasonably large values of learning rate increases the convergence rate, However

• Very large values of learning rate causes the weights to explode to a very high values and
algorithm diverges

Steps to decide optimal learning rate :

• Empirical way to choose optimal learning rate is to perform a grid search on different learning
rates and choose the learning rate that performs best on the validation set.

• However if the cost function is quadratic then , Hessian of cost function helps to decide good
learning rates.

• If σmax and σmin are the max and min eigenvalues of the Hessian matrix , then learning rate
η = 2

σmax+σmin
, guarantees linear convergence.

• If the cost function is not Quadratic , then using 2nd order Taylor series approximations of
the cost function and computing hessian to determine the values for learning rate may help
in convergence.

Problem 4.3 : The Momentum constant α is normally assigned a positive value in the range
0 < α ≤ 1. Investigate the difference that would be made in the behaviour of ∆wij(n) =

−η
∑n

0 α
n−t ∂ε(t)

wij(t)
with respect to time t if α were assigned a negative value in the range −1 < α ≤

0.

Solution

If α’s were assigned negative values, then replace α by −α in the equation given in the question ,
then the equation becomes
∆wij(n) = −η

∑n
0 (−1)n−tαn−t ∂ε(t)wij(t)

Clearly we see that (−1)n−t alternates in sign every iterations. Thus if derivative ∂E
∂wij

has the
same algebraic sign on the consecutive iterations of algorithm, then the magnitude if exponentially
weighted sum is reduced.If derivative ∂E

∂wij
has alternating signs on consecutive iterations, the expo-

nentially weighted sum increases in magnitude.
Thus the effect of having negative α is reverse as that of having positive α.

Question 3.

Goal

We want to classify the Iris dataset into respective classes based on the labels with a Multi Layer
Perceptron.

Iris dataset has 4 features namely sepal length,sepal width,petal length,petal width and three labels
Setosa , Virginica , Versicolor.

Network Architecture

Based on the low complexity of the problem we’ll fix one hidden layer and start experimenting with
the following architecture of MLP.

1. This network has 3 layers 1 input layer ,1 hidden layer, 1 output layer.

2. Input layer has four nodes one for each feature.

3. Hidden layer has ’h’ nodes.

4. The labels are encoded with one-hot encoding scheme.

5. Hence the output layer has 3 nodes.

6. Activation function at hidden layer is experimented with tanh and logistic functions.

7. Activation function at output layer is taken to be logistic.

8. Optimization is done by MMSE(Minimum Mean Square Error) criteria.

Hyperparameter Tuning

• We want to estimate the optipum number of hidden neurons for our network.

• Hence we perform experiments with a particular random split of data into train and test sets
and the results are tabulated.

Hidden layer Activation Hidden neurons Epochs for convergence Train Accuracy Test Accuracy
logistic 1 3450 98.33 100
logistic 2 279 98.33 100
logistic 3 136 98.33 96.66
logistic 4 175 98.33 100
logistic 5 160 98.33 96.66

Hidden layer Activation Hidden neurons Epochs for convergence Train Accuracy Test Accuracy
tanh 1 401 98.33 100
tanh 2 66 98.33 100
tanh 3 47 98.33 100
tanh 4 39 98.33 96.66
tanh 5 59 98.33 96.66

Conclusions

1. We see that any network with more than 2 hidden neurons converges almost in similar number
of epochs and much faster than a network with 2 or less hidden neurons.

2. Hence we fix 3 as the optimum number of hidden neurons to lower computational complexity.

Training

1. The Iris dataset is divided into training smaples (80 percent) and test samples(20 percent).

2. The features are normalized to lie in range [0,1]

3. The network is operated in Online mode and Batch mode which use Stochastic Gradi-
ent Descent and Gradient Descent algorithms respectively for training the network i.e.
updating the weight matrices and bias vectors.

4. The weight matrices are initialized with small random numbers and the bias vectors are
initialized with zeros.

5. Stopping criteria was set to 98 percent accuracy.

Observations

1. For different random splittings of data into train and test sample , we get different results.

2. Online mode runs significantly faster than batch mode.

Testing

1. Test accuracy is obtained between 89 percent and 100 percent for different splits of data into
train and test samples and different activaion functions.

2. There is no order between online or batch and between tanh or logistic when comparing test
accuracies.

3. Although in batch mode test accuracy was more close to train accuracy than in online mode.

4. Test accuracy is higher than train accuracy some times.

5. This might be due to the fact that we have very low test samples.

Error Trajectories

Online Mode

Figure 1: Error Trajectories with learnrate=0.1

Batch Mode

Figure 2: Error Trajectories with learnrate=1

Decision Boundaries

For plotting decision boundaries we first drop a feature with low variance which in this case is
sepal width

Figure 3: Online Mode Decision Boundary(tanh) after convergence (236 epochs)

Figure 4: Batch Mode Decision Boundary(tanh) after 2000 epochs

Figure 5: Online Mode Decision Boundary(logisitc) after convergence(326 epochs)

Figure 6: Batch Mode Decision Boundary(logistic) after convergence (1781 epochs)

Observations

1. Online Mode decision boundaries are similar for both tanh and logistic activation functions.

2. Batch Mode decision boundaries are also similar for both tanh and logistic activation functions.

3. Batch mode takes significantly more epochs than Online mode for convergence.

Data Shuffling

Online Mode

• Convergence is obtained faster by data shuffling.

• Error trajectory gets a bit noisy with data shuffling.

Figure 7: Error Trajectories before and after data shuffling(tanh)

Figure 8: Error Trajectories before and after data shuffling(logistic)

Batch Mode

Data shuffling will not have any impact in Batch mode as we are eventually adding all the errors
and updating the parameters only once an epoch.

Figure 9: Error Trajectories before and after data shuffling(tanh)

Figure 10: Error Trajectories before and after data shuffling(logistic)

