An Introduction to Convolutional Neural Network

Neural Networks and Learning Systems - 1

Indian Institute of Science

Motivation

Computer Vision: Image Classification

Suppose we had a set of classes : cat, truck, boat.

Motivation

Computer Vision: Image Classification

Suppose we had a set of classes : cat, truck, boat.

Problem: The semantic gap

Images are represented as 3D arrays of numbers, with integers between [0,255].

Image classifier

CIFAR-10 dataset

10 classes50,000 training images10,000 testing images 32×32 image size

Multilayer Perceptron

Multilayer Perceptron

Steps in training a neural network:

- 1. Forward propagation: Feed image and obtain loss function.
- 2. Back propagation : Calculate the gradients with respect to loss.
- 3. Update parameters: Update using the gradient.

Neural Network

Say 100 hidden neurons.

Size of image = $32 \times 32 \times 3 = 3072$. Number of parameters = 3,07,200.

Neural Network

Say 100 hidden neurons.

- Size of image = $32 \times 32 \times 3 = 3072$. Number of parameters = 3,07,200.
- Size of image = 960 × 720 × 3 = 20, 73, 600.
 Number of parameters = 20, 73, 60, 000.

Visual Cortex

Hubel and Weisel: Feature identification using low, mid and high level features.¹

¹Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex." The Journal of physiology 160.1 (1962): 106-154.

Identifying features : Convolution
 Bringing invariance : Pooling

 $32 \times 32 \times 3$ image

 $32 \times 32 \times 3$ image

A single value is obtained by taking the dot product of filter and a $5 \times 5 \times 3$ portion of image.

Convolving the filter over the image, we obtain a map of size $28 \times 28 \times 1$.

If we have six 5×5 filters, we will get 6 maps.

This forms the new input of size $28 \times 28 \times 6$.

Depth of filters increases as the layers increase.

Pooling

MAX POOLING - Downsamples the input by 2 along the width and height by performing pooling over 2×2 with a stride of 2. Discards 75% of the activations.

