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ABSTRACT

In recent years, neural networks have achieved phenomenal success across a wide range of applications. They have also proven useful for
solving differential equations. The focus of this work is on the Poisson–Boltzmann equation (PBE) that governs the electrostatics of a
metal–oxide–semiconductor capacitor. We were motivated by the question of whether a neural network can effectively learn the solution of
PBE using the methodology pioneered by Lagaris et al. [IEEE Trans. Neural Netw. 9 (1998)]. In this method, a neural network is used to
generate a set of trial solutions that adhere to the boundary conditions, which are then optimized using the governing equation. However,
the challenge with this method is the lack of a generic procedure for creating trial solutions for intricate boundary conditions. We introduce
a novel method for generating trial solutions that adhere to the Robin and Dirichlet boundary conditions associated with the PBE.
Remarkably, by optimizing the network parameters, we can learn an optimal trial solution that accurately captures essential physical
insights, such as the depletion width, the threshold voltage, and the inversion charge. Furthermore, we show that our functional solution
can extend beyond the sampling domain.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0168104

I. INTRODUCTION

Mathematics is known as the language of physics, and physicists
have developed their own dialect over time. Many physical systems
have been modeled using differential equations, the origins of which
can be traced back to Newton and his second law of motion. A dif-
ferential equation (DE) involves a function of one or more indepen-
dent variables and its derivatives. The function typically represents a
physical quantity, the derivatives signify rates of change with respect
to the independent variables, and the DE describes a relationship
between them. For most equations, it is challenging to find analytical
solutions, and we have to solve them on a computer. Several numeri-
cal methods, such as shooting methods, a finite difference method, a
finite element method, and splines,1,2 have been proposed and
studied over the last few decades. Many open-source computing plat-
forms, such as FEniCSx (fenicsproject.org), have been developed that
can solve DEs with minimum effort.

Recent years have seen the emergence of a neural network
(NN)3–5 that has impacted diverse science and engineering

disciplines. NNs can represent complex functions and are not
plagued by the curse of dimensionality.6–8 In particular, they offer
the ability to overcome difficulties, such as dependence on discreti-
zation, faced by traditional techniques, such as a finite element and
splines. The fundamental challenge with NNs is that their training
is slow and computationally demanding. However, recent advances
in computing and optimization techniques have helped overcome
this obstacle.3,9,10 On the implementation side, user-friendly soft-
ware, such as PyTorch11 and TensorFlow,12 allows users to seam-
lessly construct and train neural networks.13,14

The powerful functional learning capability of NNs15–17 has
been harnessed for solving DEs.18–23 The present work was moti-
vated by the approach of Lagaris et al.24 They pioneered the use of
NN-based trial solutions for solving DEs, which exactly satisfy the
boundary conditions (BCs). The governing equation is used to find
a trial solution that best “fits” the DE in a precise sense. The chal-
lenge with this approach is that there is no general mechanism for
constructing trial solutions, and conceiving trials for nonlinear
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differential equations can be tricky. A more recent approach, called
PINN (Physics-Informed Neural Networks25), also uses a neural
network to solve DEs. The difference with Ref. 24 is that the BCs
are not hard-constrained in PINN; instead, they are combined as a
penalty into a loss function along with the DE. While PINNs solve
the problem of having to handcraft trial solutions, making them
more versatile, the flip side is that there is no guarantee that they
satisfy the BCs exactly. In either method, the network parameters
(i.e., the weights) are optimized using backpropagation to fit the
DE and the BCs (in the case of PINN). More recently, generative
learning26 has been used to solve DEs.27 However, it is well-known
that such generative models are unstable and difficult to train.28

Though exciting, these efforts have primarily focused on a few stan-
dard DEs (Burgers equations, Schrödinger equation, etc.). An open
question is whether they can provide accurate solutions to sophisti-
cated and dynamic physical systems.

In this work, we propose to use neural networks to solve the
Poisson–Boltzmann equation (PBE) governing the electrostatic
behavior of metal–oxide–semiconductor (MOS) capacitors.29 More
specifically, we show that although the PBE is highly nonlinear, it
is nonetheless possible to use NNs to construct trial solutions that
exactly satisfy the Robin and Dirichlet boundary conditions of the
PBE. To the best of our knowledge, this is the first work to explore
the possibility of using the method of Ref. 24 to solve the PBE. In
our approach, the loss function for a given trial solution is formu-
lated using the residual of the PBE. To construct the loss from the
functional trial solution, we need to sample the physical domain,
and the number of samples determines the complexity of optimiz-
ing the trials. In this regard, we devise a physics-based sampling
scheme and introduce device parameters stochastically into the
model by virtue of which the model attains exceptional accuracy.
We demonstrate that our solution accurately discovers the depen-
dence of threshold voltage on oxide thickness and doping concen-
tration outside the sampling domain, in addition to interpreting
the accumulation, depletion, and inversion mechanisms.

II. RESULTS

A. Poisson–Boltzmann equation for MOS

MOS capacitors are the fundamental building blocks of
present CMOS (complementary metal–oxide–semiconductor) tech-
nology. The schematic of an MOS capacitor is shown in Fig. 1,
where an insulating silicon dioxide layer is sandwiched between a
metal gate and a semiconducting bulk silicon. We consider the
silicon substrate to be p-type, with NA being the acceptor concen-
tration. The work function of the gate material is chosen so that
the flatband voltage always becomes zero. A nonzero flatband
voltage shifts all the characteristics on the gate-voltage scale by
adding a DC offset, and thus, it does not have any impact on our
proposed modeling methodology.

The PBE concerns the electrostatic potential Ψ, which is an
important quantity representing a semiconductor’s intrinsic energy
level. In accordance with the Boltzmann distribution, the charge
density ρ(y) at any point y inside the semiconductor is given by29

ρ(y) ¼ q(p(y)� n(y)� NA), (1)

where

n(y) ¼ n0e
Ψ(y)=Φt , p(y) ¼ p0e

�Ψ(y)=Φt (2)

are the electron and hole concentrations, n0 and p0 are their respec-
tive values deep inside the bulk, NA is the concentration of accep-
tors, q is the elementary charge, and Φt is the thermal voltage. On
the other hand, the Poisson equation gives us the following relation:

Ψ00(y) ¼ � ρ(y)
εsi

:

Combining the Poisson and Boltzmann equations, we get the
Poisson–Boltzmann equation

Ψ00(y) ¼ � qNA

εsi
e�

Ψ(y)
Φt � 1� e�

2ΦB
Φt e

Ψ(y)
Φt � 1

� �h i
, (3)

where ΦB ¼ Φt ln (NA=ni) is known as bulk potential and
ni ¼ 1016 m�3 is the intrinsic carrier concentration of silicon.29

With the application of the gate voltage VG, the electrostatic
potential, and, consequently, the concentration of electrons and holes
changes at every point inside the semiconductor. The precise relation
between VG and Ψ comes from (3) and the boundary condition

Ψ0(0) ¼ �Cox

εsi
(VG �Ψ(0)): (4)

Also, we have the natural boundary condition

Ψ(tsi) ¼ 0: (5)

In (4) and (5), tsi and tox are the thicknesses of the semiconductor
and the oxide, εox and εsi are the permittivities of the oxide and the
semiconductor, and Cox ¼ εox=tox is the oxide capacitance per unit
area. The Dirichlet BC (5) represents charge neutrality deep inside the
bulk, while the Robin BC (4) originates from the continuity of the
electric field at the semiconductor–oxide interface.

In general, the PBE does not have an analytical solution.
However, the surface potential Ψs ¼ Ψ(0) has an implicit solution
given by29

VG �Ψsð Þ2¼ 2qεsiNA

C2
ox

"
Φte

�Ψs
Φt þΨs � Φt

þ e
�2ΦB
Φt Φte

Ψs
Φt �Ψs �Φt

� �#
: (6)

This is called the surface potential equation (SPE) and is used as a
backbone in all industry-standard, surface-potential-based compact
models for bulk-silicon-based MOSFET technology.30,31

To solve the PBE numerically, we used the solve_bvp
package from scipy.integrate.32 The normalized solution Ψ(y)=ΦB

for tox ¼ 1 nm and NA ¼ 1024 m�3 is depicted in Fig. 1(b). For
VG . 0, Ψ increases monotonically with VG until Ψs reaches the
value 2ΦB. Eventually, holes start depleting and electrons accu-
mulate at the surface as suggested by (2). However, once
Ψs ¼ 2ΦB, electron concentration at the surface becomes equal to
hole concentration deep inside the bulk; we call this the onset of
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strong inversion. The gate voltage for which Ψs ¼ 2ΦB is known
as the threshold voltage VT . This can be analytically derived from
(6) with few approximations and is given by

VT ¼ 2ΦB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qεsiNA

p
Cox

ffiffiffiffiffiffiffiffiffi
2ΦB

p
: (7)

When VG crosses VT , the inversion layer forms beneath the
oxide–semiconductor interface, and as we can see in Fig. 1(b), Ψ
becomes highly non-linear in this regime. Similarly, a negative VG

leads to the accumulation of holes at the surface, and we see that
Ψ(y) keeps increasing with VG.

In Fig. 1(b), notice how remarkably Ψ(y) changes with y
and VG:

FIG. 1. Anatomy of a MOS capacitor. (a) Schematic representation, where VG, tox , and tsi denote the applied gate voltage, oxide thickness, and depth of the semiconduc-
tor from the surface. (b) Normalized potential distribution inside the semiconductor obtained from the numerical solution of the PBE (the region close to the surface is
zoomed on the right). (c) Comparison of the normalized surface potentials obtained from the numerical solution of PBE and SPE. It also shows different regions of opera-
tion of a MOS capacitor based on Ψs. For all calculations, tox ¼ 1 nm and NA ¼ 1024 m�3.
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• For VG . VT , eΨ(y) � ey
�n

near the surface, eΨ(y) � 1 deep
inside the bulk, and eΨ(y) � ey in between (n is a positive
number greater than 1).

• For 0 , VG , VT , eΨ(y) � 1 deep inside the bulk and eΨ(y) � ey

elsewhere.
• For VG , 0, eΨ(y) � ey

n
near the surface and eΨ(y) � 1 elsewhere.

This highly dynamic nature of the solution of the PBE makes the
learning problem challenging as well as interesting.

The solution of SPE (6) is compared with the solution from
the solve_bvp package in Fig. 1(c). Their excellent agreement
confirms the accuracy of the numerical method. It is worth noting
that SPE is obtained by setting tsi ¼ 1 in (5). However, for the
numerical solution of PBE, we took tsi ¼ 200 nm. We found that
with the further increase of tsi, the solution for Ψs does not change.
However, this increases the optimization time of our neural
network model (see Sec. II D). From Fig. 1(c), we see that the
surface potential changes linearly with VG for 0 , VG , VT . This
is because the exponential terms in (6) become insignificant in this
regime, and the Poisson equation effectively becomes the Laplace
equation. In the accumulation (VG , 0) and the strong inversion
(VG . VT ) regimes, the exponential terms dominate the other
terms, and hence, Ψs becomes a logarithmic function of VG. As a
result, Ψs saturates at �(2ΦB þ 3Φt) and �� 3Φt in the strong
inversion and accumulation regions.

B. Prior works

As mentioned earlier, NNs have been used for solving DEs.18–25

In particular, our approach is motivated by Refs. 24 and 25. We will
discuss these methods and explain how they can be used for solving
(3) along with the boundary conditions (4) and (5). To motivate our

contribution, we will specifically explain the problem faced in directly
applying the method in Ref. 24 to our problem.

In the last few years, PINNs25 have been used extensively to
solve various differential equations.33 In this approach, the solution
of the differential equation is modeled using a neural network. The
weights of the network are determined by optimizing a loss function
derived from the differential equation and the boundary conditions.

We can use PINN to solve the present PBE as follows.
Consider a standard feedforward neural network N (y; θ) with
input y and parameters θ (see Fig. 2). To keep the exposition
simple, we consider just one input at this point; we will later work
with several input variables and internal parameters without any
fundamental change in the derivation. Ideally, we wish to find θ
such that N (y; θ) satisfies (3)–(5). More precisely, consider the
error function derived from (3),

E1(y, θ) ¼ N 00(y; θ)þ qNA

εsi
e�

N (y;θ)
Φt � 1� e�

2ΦB
Φt e

N (y;θ)
Φt � 1

� �h i

and the error functions

E2(θ) ¼ N (tsi; θ) and

E3(θ) ¼ N 0(0; θ)þ Cox

εsi
(VG �N (0; θ))

derived from (4) and (5). In the above equations, the derivatives are
with respect to y.

Ideally, we wish to find a parameter setting θ such that
E2(θ) ¼ 0 and E3(θ) ¼ 0 and E1(y, θ) ¼ 0 for all y belonging to
the domain of interest. However, this can be mathematically infea-
sible. A standard workaround is to use a regression framework.
Specifically, we can sample points y1, . . . , yK from the domain of

FIG. 2. Architecture of the feedforward neural network used for constructing the trial solution ψ of the Poisson–Boltzmann equation (see the main text for details). We use
normalized inputs to the network; e.g., we normalize the input y to ŷ ¼ (y � μ)=σ, where the mean μ and the standard deviation σ are computed over the set of
sampled values of y. We used 50 neurons per layer, which we found to be optimal for our problem (also see Fig. S6).
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interest and formulate the loss function as

L(θ) ¼ 1
K

XK
k¼1

E1(yi, θ)
2 þ λ1E2(θ)

2 þ λ2E3(θ)
2, (8)

where λ1, λ2 . 0 are used to combine the loss components. The
optimal parameter setting θ* is obtained by minimizing L(θ) over
θ. This is precisely the idea behind PINN.25

We can minimize L(θ) using standard NN training. In par-
ticular, if θ are the weights of the neural network, then L(θ) is dif-
ferentiable in θ and, hence, can be optimized using gradient
descent and backpropagation.11,12 PINN is quite versatile and can,
in principle, be used to tackle any DE. On the flip side, incorporat-
ing boundary conditions as a penalty in the loss function means
that they do not necessarily have to be met exactly. More precisely,
if θ* is the minimizer of (8), then we cannot guarantee that
E2(θ*) ¼ 0 and E3(θ*) ¼ 0. To do so, we need to enforce them as
hard constraints in the optimization problem; i.e., we would have
to solve the optimization problem

min
θ

1
K

XK
k¼1

E1(yi, θ)
2 s:t: E2(θ) ¼ 0, E3(θ) ¼ 0: (9)

Unfortunately, this is a highly challenging problem. Indeed, due to
the nonlinear nature of the neural network, it is difficult to charac-
terize the feasible set {θ : E2(θ) ¼ 0, E3(θ) ¼ 0}. We demonstrate
in Fig. S1 that the PINN approach fails to learn the solution to PBE
for the very same reason.

Lagaris et al.24 proposed an ingenious approach to circumvent
this problem, which we explain here using our PBE. Similar to
PINN, we start with a neural network N (y, θ). However, we do not
use this to directly represent the solution of (3). Instead, we con-
sider a trial solution of the form

ψ(y; θ) ¼ F(y, N (y; θ), N 0(y; θ), . . . ), (10)

where the function F(y, u, v, . . . ) is such that the boundary condi-
tions (3) and (5) are satisfied. Specifically, for any choice of θ, we
must have

ψ(tsi; θ) ¼ 0, ψ 0(0; θ) ¼ �Cox

εsi
(VG � ψ(0; θ)): (11)

It is not obvious if such an F exists, i.e., if we can construct trial
solutions of the PBE in the first place. It was shown in Secs. III and
IV of Ref. 24 how such trial solutions can be constructed for
Dirichlet and Neumann BCs. For our PBE, while (5) is a simple
Dirichlet BC, (4) is a Robin BC involving the function Ψ and its
derivative at y ¼ 0. We make the case that it is highly nontrivial to
devise trial solutions for Robin BCs using the ideas discussed in
Ref. 24.

C. Trial solution for PBE

The previous discussion brings us to the ingenuity of this
work, namely, the construction of a trial solution of the form (10)

that conforms to (5) and (4). The difficulty comes from the Robin
BC, which is the form of

ψ 0(0; θ)þ aψ(0; θ)þ b ¼ 0, (12)

where a ¼ �Cox=εsi and b ¼ VGCox=εsi. Since a = 1, a possible
trial solution is

ψ(y; θ) ¼ (y � 1)(y2N (y; θ)þ b=(a� 1)) (13)

corresponding to F(y, u) ¼ (y � 1)(y2uþ b=(a� 1)). It is not diffi-
cult to verify that (13) satisfies (5) and (12). Keeping in mind the
exponential term in (3), we can alternatively consider the following
trial solution:

ψ(y; θ) ¼ (y � 1)(y2e�N (y;θ) þ b(a� 1)�1), (14)

where F(y, u) ¼ (y � 1)(y2e�u þ b=(a� 1)). Again, it can be veri-
fied that (14) satisfies (5) and (12).

The problem with (13) and (14) is that the value at y ¼ 0 is
pivoted in either case; namely, we have ψ(0, θ) ¼ �b=(a� 1), irre-
spective of θ. In other words, the potential at the boundary y ¼ 0
(and around it by continuity) is clamped and cannot be controlled
using the network parameter θ. This limits the generalization capa-
bility of the trial solution. We note that this problem does not arise
with the trial solutions in Ref. 24, where just Dirichlet and
Neumann BCs are considered.

Considering the form of (12), we wish to come up with a trial
solution that has both N (0; θ) and N 0(0; θ). Moreover, consider-
ing the nature of the solution in Fig. 1, we wish to have an expo-
nential dependence on N (y; θ) as in (14). This will help in
modeling the steep variation in the potential near the surface, as
well as the saturation in the neutral region. Considering the above
points, we propose a trial solution of the form

ψ(y; θ) ¼ G y, N (y; θ), N (0; θ), N 0(0; θ)
� �

, (15)

where we define G(y, u, v, w) to be

G(y, u, v, w) ¼ VG
γ

1þ γ þ tsiw

� �
1� y

tsi

� �
e�(u�v) (16)

and γ ¼ Coxtsi=εsi. Thus, the complete expression of the trial solu-
tion is

ψ(y; θ) ¼ VG
γ

1þ γ þ tsiN 0(0; θ)

� �
1� y

tsi

� �

� exp (�(N (y; θ)�N (0; θ))): (17)

Our trial solution depends not just on the output of the neural
network N (y; θ) as in (13) and (14), but also on N (0; θ) and
N 0(0; θ). The latter terms play an important role in the Robin BC
(12). Indeed, it can be verified (see the Appendix) that (17) satisfies
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(11). Importantly, note that

ψ(0; θ) ¼ VG
γ

1þ γ þ tsiN 0(0; θ)

� �
:

Thus, unlike the trial solutions (13) and (14), the potential at the
boundary can be controlled using the network parameter. In (17),
we considered a single input y to the model, assuming other quan-
tities, such as VG, tox and NA, to be fixed. However, we want a
more versatile model that can predict the potential function Ψ(y)
for different settings of VG, tox , and NA. This can be done simply
by defining the input vector

ξ ¼ (VG, tox , NA)

and constructing a neural network that takes both y and ξ as input
and returns the predicted potential (see Fig. 2). Subsequently, we
modify the specification of the trial function in (15) to

ψ(y, ξ; θ) ¼ G y, N (y, ξ; θ), N (0, ξ; θ), N 0(0, ξ; θ)
� �

,

where G is given by (16) and N 0(0, ξ; θ) denotes the derivative of
N (y, ξ; θ) with respect to y at 0. We will work with this trial solu-
tion in the rest of the paper.

D. Loss function and model optimization

In this section, we explain how the loss function is computed
and how it is used to determine the optimal trial solution. The
optimality in question is in an averaged sense, namely, with respect
to different settings of ξ. Moreover, we also need to sample the
y-domain as done in (8) and (9). The problem is that even if we
consider just 100 samples for each variable, we would end up with
(100)4 ¼ 108 samples; i.e., the loss function would have 108 terms.
We will use the device physics to optimize the data volume. The
precise sampling strategy is as follows:

1. We sample y according to the nonlinearity offered by Ψ(y). In
particular, we sample 500 points in [0, 10] nm, 1000 points
in [10, 50] nm, 1000 points in [50, 130] nm, and 500 points in
[130, 200] nm.

2. We take 29 samples of tox in the range [0:8, 1:5] nm.
3. We take 41 uniform samples of NA in the range

[0:1, 1]� 1024 m�3.
4. We choose VG in the range (�3VT , 3VT ) for the fact that in the

semiconductor technology roadmap, the supply voltage is kept
three times that of the threshold voltage.34 As VT varies with NA

and tox , we take the largest VT over all possible values of NA and
tox mentioned above. This turns out to be 1:2V ; therefore, we
take 1200 samples of VG in the range [�3:6, 3:6]V .

It is clear from the above discussion that the number of
samples increases significantly with tsi. As mentioned in Sec. II A,
tsi should be chosen large enough so that there is a sufficient
neutral region to make the electric field Ψ0(y) decay beyond the
depletion width and become insignificant at y ¼ tsi. It, thus, poses
a great challenge to optimize the model for a low value of NA,
which increases the depletion width. We, therefore, limit the lowest

value of NA at 0:1� 1024 m�3 based on the available computational
resources. At the same time since we are using Cox ¼ εox=tox in the
boundary condition, our model does not face a similar challenge
for high-ε gate dielectric.

Of the four inputs, the magnitude of three inputs is highly
varying: tox , y � 10�9, and NA � 1024. Therefore, we propose nor-
malizing these (using their mean and standard deviation) before
feeding them into the network. Moreover, since the normalized
inputs are dimensionless, (17) does not suffer from a dimension
mismatch. The above sampling strategy produces a massive data set
of size 3000� 29� 41� 1200 � 109. To control this, we break the
data into two parts. We consider all possible combinations y and
VG and denote this by D. The size of D is 3000� 1200 � 106. On
the other hand, we randomly sample points from all possible com-
binations of tox and NA; we denote the reduced set by D0. We con-
sider the loss function

L(θ) ¼
X

E(y, VG, tox , NA; θ)j j, (18)

where

E(y, ξ; θ) ¼ ψ 00(y, ξ; θ)þ qNA

εsi
e�

ψ(y,ξ;θ)
Φt � 1� e�

2ΦB
Φt e

ψ(y,ξ;θ)
Φt � 1

� �h i
,

(19)

and the sum in (18) is over (y, VG) [ D and (tox , NA) [ D0. Note
that unlike Refs. 24 and 25, we use the L1 metric in (18). Regarding
the choice of activation function35 for the neural network, though
ReLU is ubiquitously used,9 we cannot use it for our problem
because, since the second derivative of ReLU is zero, this will force
N 00(y, ξ; θ) to vanish. Instead, we use a hyperbolic tangent (tanh)
as the activation function. This ensures that the proposed trial
N (y, ξ; θ) is differentiable in y and θ. We need the derivative in y
to define ψ(y, ξ; θ) in the first place. On the other hand, we need
the derivative with respect to θ for gradient-based learning. We do
not use activation in the output layer because the output of tanh is
limited to (�1, 1), whereas the predicted potential should be
allowed to assume any real value and not just values in (�1, 1).
For minimizing L(θ), we use the Adam optimizer10 with a batch
size of 20 k. The initial learning rate is 0:001 and is reduced by
96% after every 1000 epochs. We run the optimization steps for
150 k epochs, which took 16 days on a NVIDIA A100 GPU. The
evolution of the loss is shown in Fig. S2. We generally noticed that
gradient-based optimization of (18) using gradient descent is slow
in practice and can be speeded up if we optimize log L(θ) instead
of L(θ).

E. Validation and physical insights

We validated our model against the numerical solution of PBE
and SPE. The results are shown in Figs. 3(a)–3(c). We observe that
the maximum absolute error in the surface potential is around
1mV, and the maximum error in predicting Ψ(y) is 5mV. We see
from Fig. 3(c) that our model can accurately interpret the accumu-
lation, depletion, and weak and strong inversion mechanisms.
Figure 3(d) shows that our model can also apprehend the effect of
device parameter variation. In fact, the model has captured the
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fundamental physics of change in depletion width with doping
concentration. We present predictions for various combinations of
NA and tox in Fig. S3. We use our model to draw further insights
into MOS capacitor device physics. Figure 4(a) shows the variation
of inversion charge density with the applied gate voltage. The
inversion charge per unit area is calculated as

Q ¼ � qn2i
NA

ðtsi
0
e
Ψ(y)
Φt dy: (20)

We see that our model successfully predicts inversion charge
density characteristics that vary exponentially with gate voltage in the
sub-threshold regime (VG , VT ) and linearly in the strong inversion
regime (VG . VT ). This is a signature of MOS capacitor characteris-
tics. It is worth noting that the drain current in a MOS transistor also
follows a similar trend. We further try to estimate physical properties,
such as the threshold voltage from (7) and the sub-threshold slope

factor η0 from the Q�VG characteristics using the formula

η0 ¼
1

2:3Φt
� dVG

d log jQj :

Figures 4(b) and 4(c) reveal that our model accurately captures
the variations of these two parameters as a function of NA and tox .
Reduction of tox results in enhancement of oxide capacitance Cox ,
increasing the gate control over the inversion layer. As a result,
both VT and η0 decrease with the decrease in tox . At the same time,
a higher value of NA increases the depletion charge and the deple-
tion capacitance, which effectively increases the values of VT and
η0. It is worth noting that though our model is optimized to fit the
PBE, it can accurately predict a variety of other physical phenom-
ena, such as threshold voltage, sub-threshold slope factor, variation
of inversion charge with gate voltage, and so on.

FIG. 3. Neural network prediction vs numerical solution. (a) Comparison for various normalized gate voltage (VG=VT ); the corresponding absolute errors are shown in (b).
(c) and (d) Similar comparison for the normalized surface potential. For (a)–(c), NA ¼ 1024 m�3 and tox ¼ 1 nm. (d) Prediction from our model for two diverse settings of
NA and tox .
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We now examine if the proposed model captures the device
physics outside the sampling domain. In Figs. 4(b) and 4(c), we
observe that our model can capture the variation imposed by NA

and tox outside the sampling domain quite well. However, VT and
η0 are estimated from the linear region of Ψs�VG characteristics,
which is easier to learn since the exponential terms in PBE are
insignificant there. Therefore, we test our model by extrapolating it
outside its sampling domain on the VG scale, as shown in Fig. 5.
We also observe the performance of our model for the prediction
of low-frequency gate capacitance given by

CGG ¼ Cox 1� dΨs

dVG

� �
:

We see that the extrapolation is decent for VG , 0 (�1V until
VG=VT ¼ �4); however, it is incremental for VG . 0. The origin of

such a discrepancy can be explained using Fig. 1(c) and (3). Since
our sampling domain on the VG scale is limited to [�3VT , 3VT ],
the model is being introduced to a larger accumulation regime
[where the exp(�Ψ=Φt) factor dominates] and a smaller strong
inversion regime [where the exp((Ψ� 2ΦB)=Φt) term dominates].
Therefore, the model is better able to fit the accumulation region
than the strong inversion region.

F. Discussion

Though a substantial portion of the sampling regime appears
to be accurately captured by our NN model, the accuracy at the
lowest doping level does not meet expectations, as seen in Figs. 4(c)
and S4. To understand this issue better, we conducted another
experiment with much lower doping concentration. We optimized
the NN for fixed values of tox ¼ 1:5 nm and NA ¼ 0:05� 1024m�3.

FIG. 4. Calculation of inversion charge density, sub-threshold slope factor, and threshold voltage. (a) Inversion charge per unit area as obtained from (20) as a function of
the normalized VG. Variation of (b) a sub-threshold slope factor and (c) a threshold voltage as a function of tox for different NA. The shaded region represents the sampling
domain.
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tsi is chosen to be 250 nm to accommodate the deeper depletion
width, and the sampling is done accordingly. We find that the NN
prediction matches near-exactly with the numerical results (see
Fig. S5). We can conclude that our model inherently is not limited
by low substrate doping. However, while getting optimized over a
very large range of NA (which also leads to a large variation of
depletion width where the Poisson equation behaves as a Laplace
equation), our model is not able to learn the solution for smaller
NA accurately. This issue requires further investigation.

III. CONCLUSION

In this study, we demonstrated how a feedforward neural
network can solve the Poisson–Boltzmann equation governing an
MOS capacitor. In particular, we used the method of trial solutions
proposed by Lagaris et al.,24 where the novelty was the specification
of a trial solution that conforms to the mixed (Dirichlet + Robin)
boundary conditions of the Poisson–Boltzmann equation.
Comparing with the solution predicted by traditional numerical
methods, we confirm that the proposed model can learn the rela-
tionship between the input parameters (y, VG, tox , NA) and the
potential Ψ(y) with exceptional accuracy. We find that the neural
network can interpret several important aspects of MOS device
physics, such as the doping-dependent depletion width, variation
of threshold voltage with oxide thickness and doping, and the low-
frequency capacitance–voltage characteristics. The extrapolation
capability of the model shows that it does not just memorize the
results from the optimization regime but is also able to capture the
device physics.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of PINN model
performance, the evolution of the proposed model during

optimization, and various other results, including experiments with
the number of neurons per layer.
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APPENDIX: BOUNDARY CONDITIONS VERIFICATION

In this part, we give detailed calculations to show that the pro-
posed trial solution (17) satisfies the boundary conditions in (11).
It is obvious that ψ(tsi; θ) ¼ 0 for all θ. On the other hand, we can
write (17) as

ψ(y; θ) ¼ α e�N (y;θ) 1� y
tsi

� �
, (A1)

where

α ¼ γ eN (0;θ)

1þ γ þ tsiN 0(0; θ)

� �
VG:

Differentiating (A1) with respect to y, we have

ψ 0(y; θ) ¼ �α e�N (y;θ) 1
tsi

þ 1� y
tsi

� �
N 0(y; θ)

� �
:

In particular,

ψ 0(0; θ) ¼ � α

tsi
e�N (0;θ) 1þ tsiN 0(0; θ)

� �
: (A2)

On the other hand, we have

VG � ψ(0; θ) ¼ VG � α e�N (0;θ)

¼ VG � γ

1þ γ þ tsiN 0(0; θ)
VG

¼ 1þ tsiN 0(0; θ)
1þ γ þ tsiN 0(0; θ)

� �
VG

¼ α

γ
e�N (0;θ) 1þ tsiN 0(0; θ)

� �
: (A3)

Combining (A2) and (A3), we get the second condition in (11).
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