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THE BIGGER PICTURE With the rise of artificial intelligence, efforts are being made to develop data-driven
models that can replace time-intensive numerical simulations in physical sciences. One such example is the
Monte Carlo (MC) method, which relies on a large number of random events and is widely used to simulate
the temperature-dependent fluctuations of magnetic ordering of two-dimensional (2D) materials. Here, we
develop data-driven models that can perform the MC process-based Curie temperature calculation with
exceptional accuracy in the blink of an eye. We achieve such performance by coupling the learning to
the data-generation process and conducting a massive amount of MC simulations accelerated by a bisec-
tion-technique-based search. Our models could aid in the rapid discovery of beyond-room-temperature 2D
magnetism, a rapidly emerging field in nanoscience and technology.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Monte Carlo (MC) simulation of the classical Heisenberg model has become the de facto tool to estimate the
Curie temperature (TC) of two-dimensional (2D) magnets. As an alternative, here we develop data-driven
models for the five most common crystal types, considering the isotropic and anisotropic exchange of up
to four nearest neighbors and the single-ion anisotropy. We sample the 20-dimensional Heisenberg spin
Hamiltonian and conceive a bisection-based MC technique to simulate a quarter of a million materials for
training deep neural networks, which yield testing R2 scores of nearly 0.99. Since 2D magnetism has a
natural tendency toward low TC, learning-from-data is combined with data-from-learning to ensure a nearly
uniform final data distribution over a wide range of TC (10–1,000 K). Global and local analysis of the features
confirms the models’ interpretability. We also demonstrate that the TC can be accurately estimated by a
purely first-principles-based approach, free from any empirical corrections.
INTRODUCTION

A new horizon in nanotechnology has opened up with the exper-

imental demonstration of low-temperature ferromagnetism in

two-dimensional (2D) materials CrI3 and Cr2Ge2Te6.
1,2 The pres-

ence of long-range antiferromagnetic order was also detected in

atomically thin FePS3,
3 firmly establishing the fact that magnetic

order can indeed be sustained in 2D at finite temperatures. Mer-

min and Wagner argued in their famous work that an isotropic

Heisenbergmodel must enforce the absence of long-rangemag-

netic order in 2D at positive finite temperatures.4 However, the

significant magnetocrystalline anisotropy of these 2D materials
This is an open access article under the CC BY-N
overcomes the Mermin-Wagner constraint, making it feasible

to detect even beyond-room-temperature ferromagnetism in

monolayer VSe2 (both 1T5 and 2H6 phases) and MnSex more

recently.7 Magnetism in two dimensions is attracting tremen-

dous technological importance, since it can potentially revolu-

tionize fields such as spintronics,8 valleytronics,9 sensing, and

memory technologies.10

In parallel with experimental efforts,11 in silico screening of

the vast material space based on a combination of density func-

tional theory (DFT) and Monte Carlo (MC) simulation has

been an essential tool to predict the magnetic properties of 2D

materials.12–17 It is especially important for the prediction of
Patterns 3, 100625, December 9, 2022 ª 2022 The Authors. 1
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ferromagnetic (FM) or antiferromagnetic (AFM) to paramagnetic

(PM) transition temperature, known as the Curie or Néel tempera-

ture (TC or TN), which is probably the most vital property in the

context of practical usage. Fitting the DFT-calculated

energies and spin values to an anisotropic Heisenberg model and

performing a classicalMC (where the spins are treated as classical

three-dimensional vectors) based on this model usually yields an

accurate prediction of the transition temperature.17–20On the other

hand, semiclassical or full quantummethods such as renormalized

spin-wave (RNSW),Green’s function,orpath-integralquantumMC

have also been demonstrated to predict accurate values of the

transition temperature.21,22 However, in addition to the prediction

accuracy, the simplicity of the classical MC of the anisotropic Hei-

senberg model has made it a common choice for determining the

TC (for FM) or TN (for AFM) of 2D magnets.

Nevertheless, the relatively ‘‘simple’’ classical MC can become

computationally highly expensive for high-throughput studies,

where manymaterials need to be rapidly screened based on their

TC.
20,22 Moreover, the accuracy of the MC process strongly de-

pends on the system size and number of steps. Extensive efforts

have therefore beenmade to replace theMCprocesswith amuch

less expensive but similarly accuratemethod, such as developing

an analytical formula of the TC.
18,20,22,23 Although these formulas

are shown to be accurate for a few cases, they can be heavily

approximated, considering only the first or second nearest

neighbor interactions and sometimes even ignoring the effect of

the single-ion anisotropy. Furthermore, these expressions are

limited to only a few lattice types (square, honeycomb, and hexag-

onal). At the same time, the underlying DFT-based process to

calculate themagnetic parameters (spin, isotropic and anisotropic

exchange, and single-ion anisotropy), which act as inputs to the

MC engine, is also highly critical. The parameter values depend

greatly on the exchange-correlation (XC) functional used and

other empirical corrections such as Hubbard U and Hund J in

the case of DFT + U and the percentage of Hartree-Fock ex-

change in the case of hybrid functionals. The main disadvantage

of using such empirical parameters is that they are strongly sys-

tem dependent, and thus their values should be recalibrated for

each system,19,24 which again is unsuitable for high-throughput

screening purposes.

With the increased abundance of materials data, both exper-

imental and computational, machine learning (ML) has become

extremely relevant in materials science and chemistry.25–28 In

our previous work, we developed an FM/AFM classifier and a

TC predictor directly from the crystal structure.19 Since then,

innovative ML models with relevant features have been devel-

oped to predict the magnetic ground state of 2D materials

accurately,29 and an active-learning-based model with a uni-

versal magnetic representation has been proposed to precisely

screen for high TC 2D materials even with scarce data by pre-

dicting the magnetic configurational energy difference.30

Furthermore, sure independence screening and sparsifying

operator (SISSO) analysis was used to generate a simple

expression of TC from crystal descriptors of 79 materials with

moderate success,31 perhaps because of the small dataset.

Despite these advances, a generalized analytical expression

or an ML model that can accurately predict the TC of 2D mag-

nets from the DFT-obtained magnetic parameters without per-

forming the costly MC process is still lacking. Also, there is no
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standard one-size-fits-all empirical correction-free true first-

principles-based methodology that can predict the magnetic

properties of 2D materials accurately.

In this work, we first propose a generalized anisotropic Hei-

senberg Hamiltonian that can deal with the easy axis aligning

in any of the three principal directions, considers both isotropic

and anisotropic exchanges up to the fourth nearest neighbors,

and also the single-ion or on-site anisotropy. Incorporating this

Hamiltonian, we develop an automated computational workflow

that can predict the magnetic properties, including TC or TN, of

any 2D material, starting from its crystal structure information.

We show that when the DFT calculations are performed with a

newly developed meta-generalized gradient approximation

(meta-GGA)-based regularized-restored strongly constrained

and appropriately normed (r2SCAN)32 XC functional, the work-

flow-predicted TC or TN of 2D materials consistently match the

experimentally reported valueswithout any empirical corrections

such as Hubbard U or Hund J.

Next, armed with the physical constraints, we sample the

20-dimensional input parameter space of the MC process

near-uniformly. We then perform a massive amount of MC sim-

ulations on these random data and use a bisection method to

precisely estimate the TC. Ultimately, we generate about

50,000 data points for each crystal type, and the final ML

models are trained on these data. The resulting models exhibit

a mean absolute error (MAE) of 11.85–20.36 K and an R2 score

of 0.983–0.994 on the unseen test datasets, which can be

considered excellent. Furthermore, we show that the model

performs exceptionally well by accurately predicting TC of

real experimental or computationally predicted 2D materials.

Both global and local interpretability analyses are performed

on the models, and valuable insights are drawn into the contri-

bution of each term of the Hamiltonian to the TC. Our work can

significantly accelerate the high-throughput discovery of 2D FM

materials.

RESULTS AND DISCUSSION

Spin Hamiltonian and fitting
We begin by defining our generalized anisotropic Heisenberg

spin Hamiltonian below.
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Figure 1. Schematic of the automated workflow for determining the transition temperature of 2D magnets
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Here, J1, J2, J3, and J4 terms represent isotropic exchanges

with the first, second, third, and fourth nearest magnetic neigh-

bors, respectively. Si represents the spin of the site in question,

and Sj, Sk, Sl, and Sm are the spins of sites at the first, second,

third, and fourth nearest magnetic neighbor shells. These spins

are all 3D vectors, and the individual spin components are repre-

sented as Sd
n , where n = i, j, k, l and d = x, y, z. The Kpd terms

represent the anisotropic exchange for neighbor shell p (p = 1,

2, 3, 4) and direction d (d = x, y, z). The Ad terms represent the

single-ion anisotropy for direction d. Note that the ½ factor for

the exchange terms is there to counter the effect of double

counting. This Hamiltonian covers all the essential interactions

commonly exhibited by 2D magnets. However, for simplicity,

we exclude complex interactions such as antisymmetric or

Dzyaloshinskii-Moriya interaction exchange, which is anyway

not expected to exist in centrosymmetric materials, and mag-

netic dipole-dipole interactions, which usually do not signifi-

cantly affect the transition temperature. We also assume thema-

terial to be uniform, i.e., each magnetic site in the material to

possess an equal magnitude of spin, S. We end up with 20 inde-

pendent material parameters: S, J1, J2, J3, J4, K1x , K1y , K1z, K2x,

K2y, K2z, K3x, K3y, K3z, K4x, K4y , K4z, Ax, Ay, and Az. We note that

only the out-of-plane components of the anisotropy parameters,

i.e., Kpz and Az, calculated relative to their in-plane counterparts,

are enough to represent magnetism in 2D materials with an easy

plane or out-of-plane easy axis, but the inclusion of the in-plane

anisotropy components ensures that the Hamiltonian mentioned

above can represent magnetism of materials with an easy axis in

either of the x, y, or z directions.

There are, however, practical problems in extracting the y

component of the anisotropy parameters, i.e., Kpy and Ay, for

crystals with non-orthogonal unit cell axes, such as hexagonal

unit cells. For these cases, we adopt an XXZ model, i.e., we as-

sume in-plane isotropy and make Kpx = Kpy and Ax = Ay. This

is usually a reasonable approximation for hexagonal 2Dmagnets

because the in-plane anisotropy is usually much weaker
compared with the out-of-plane anisotropy.18,23,33 The XXZ

model is also assumed in the case of materials with square

unit cells for obvious reasons. The XYZ model is adequately im-

plemented for rectangular unit cells where it is most relevant.

Fitting theDFTdata to 20parameters at once is not an easy feat,

and we implement this in a gradedmanner. First, along with S, the

isotropic Jp terms are fitted to the energies of different collinear FM

and AFM magnetic configurations. Next, the effect of spin-orbit

coupling is turned on, and the magnetization axis is aligned to

the x (y) and zdirections for theFMandvariousAFMmagneticcon-

figurations. The differencebetween the collinear and non-collinear

(magnetism aligned to x, y, or z) total energies are assumed to be

entirely contributed by the anisotropic exchange and on-site

anisotropy terms for those specific directions, and a further fitting

procedure isperformed toobtain these.Thisway, theequations for

isotropic and direction-dependent anisotropic terms become de-

coupled and thus become easier to solve.

Validation with experimental data
Incorporating the aforementioned Hamiltonian, we develop an

automatedworkflow,which significantly improves upon our previ-

ouswork.19Comparedwith theearlier version, theupgradedwork-

flow takes into account the effect of anisotropic exchanges and

also works seamlessly with AFM materials. Starting only from the

crystal structure of a 2D material, the developed code can auto-

matically generate symmetry-constrained possible FM and AFM

configurations, calculate their collinear and non-collinear energies

with themagneticmomentsoriented in the x (y) and zdirectionsus-

ing DFT, then perform a fitting to obtain the magnetic parameters

of theHamiltonian and finally performanautomatic neighbormap-

ping of a large supercell followed by a series of MC simulations of

the model to determine the transition temperature. The whole

workflow is depicted pictorially in Figure 1.

The parameter values and, in turn, the transition temperature

and even the magnetic ground state are entirely dependent on

the DFT calculators. It is well known that local or semilocal
Patterns 3, 100625, December 9, 2022 3



Figure 2. Different crystal types and their

neighbor coordination

Only magnetic sites are shown. The black site is the

reference, and the blue, magenta, green, and red

sites make up the first, second, third, and fourth

nearest neighboring shells, respectively.

ll
OPEN ACCESS Article

Please cite this article in press as: Kabiraj et al., Massive Monte Carlo simulations-guided interpretable learning of two-dimensional Curie temperature,
Patterns (2022), https://doi.org/10.1016/j.patter.2022.100625
DFT is unable to predict the accurate energetics when the sys-

tem in question contains elements with localized and open d or

f orbitals (which is the case for magnetic materials). Usually, a

combination of Hubbard U and Hund J correction is therefore

required for these orbitals to counter the effect of the self-inter-

action error. However, the U/J values are empirical and strongly

material dependent.19,24 Recently developed meta-GGA XC

functional SCAN34 is a semilocal density functional that fulfills

all known constraints that the exact density functional must

satisfy. It has been demonstrated that SCAN is superior to

most gradient-corrected functionals and can even deal with

strongly correlated magnetic materials without any empirical

corrections.35–37 However, SCAN is known to be vulnerable to

numerical instabilities, and an upgraded version of this func-

tional, r2SCAN, was recently introduced that is shown to match

the accuracy of the parent SCAN functional but with much

enhanced numerical efficiency and accuracy with low-cost

computational settings.32We thus identify the r2SCAN functional

as the ideal XC functional to be employed for empirical-correc-

tion-free accurate DFT calculators despite it being more compu-

tation extensive than GGA + U. We initially test this workflow on

experimentally synthesized and characterized FMmaterials CrI3,

CrBr3, and CrCl3, and AFM material FePS3. The workflow pre-

dicts their TC (TN in the case of AFM FePS3) to be 53.52 K,

31.43 K, 19.5 K, and 131.32 K, respectively, which are remark-

ably close to the experimentally determined values (45 K,1 27–

34 K,38,39 16 K (bilayer),38,40 and 118 K3). After developing the

ML models, we further test our workflow on a host of real mate-

rials and show that our workflow and ML models consistently

predict the TC accurately.

Sampling the input space and data generation
Although our workflow can handle both FM and AFM materials,

we focus only on FM material for greater technological impor-

tance while developing the ML model. Figure 2 shows the

most common five types of 2D magnetic crystals and their
4 Patterns 3, 100625, December 9, 2022
magnetic neighbor distribution up to

the fourth nearest neighbor. The four

numbers represent coordination numbers

for the respective neighbor shells. For

instance, the representation 2-2-4-2

means for this particular crystal type,

each magnetic site is surrounded by two

magnetic nearest neighbors, two second

nearest neighbors, four third nearest

neighbors, and two fourth nearest neigh-

bors. From here on, we would identify

these crystal types by their unique format

CN1-CN2-CN3-CN4, where CNp (p = 1, 2,

3, 4) is the magnetic coordination number

of the pth neighboring shell. The experi-
mentally studied materials CrI3, CrBr3, CrCl3, and Cr2Ge2Te6
all fall under the crystal type 3-6-3-6.

Usually in materials science, the main obstacle to developing

accurate ML models is the lack of data.25,41 For properly gener-

ating the inputs for the data, we decide to sample the

20-dimensional input parameter space as uniformly as possible.

However, these inputs must be generated with adequate phys-

ical constraints. Ideally, the magnetic moment of a magnetic

site in a material must be 1, 2, 3, 4, or 5 mB, depending on the

number of unpaired electrons in the site’s (hybridized) d orbital.

However, it can go up to 6 mB depending on the hybridization.

This implies that the value of S must become half of these inte-

gers, i.e., S ε [0.5, 1, 1.5, 2, 2.5, 3]. When choosing S, we pick

a value from this discrete set uniformly and randomly. Similarly,

we choose the Jp values from the continuous interval of �20

meV/link to 20 meV/link. In our experience, the Jp values of the

real materials usually fall in this range. After generating the S

and Jp values, the condition
P4

p = 1CNpJp > 0 is checked, which

ensures FM behavior, and the values are not accepted unless

they satisfy this criterion. We further note that among the five

crystal types, we use XXZ model for 4-4-4-8, 6-6-6-12, and

3-6-3-6, while the XYZ model is employed for 2-4-2-4 and 2-2-

4-2. Again, from experience, Az is chosen from the continuous

range of 0 to 300 meV/magnetic atom, and Ax (and Ay for the

XYZ model) are selected from the range Az � 1 < Ax (Ay) < Az +

1 as long as Ax (Ay) R 0. It is worth noting that because of our

chosen spin Hamiltonian and unique fitting procedure, the values

of the Ad terms are absolute and, therefore, can be quite large.

However, only their relative values would matter in the MC pro-

cess, which is no more than 1 meV/atom. Finally, the Kpd values

are independently chosen from the range �2 meV/link to 2

meV/link.

After generation, this initial input set is subjected to MC simu-

lations. 2D materials exhibit a natural tendency for low TC, and

this is indeed reflected in the MC simulations. Most of the

(z97%) initial inputs produce TC predominantly below the lower



Figure 3. Details of data generation

(A) Schematic of the coupled data-generation-model-training process.

(B) Validation of the empirical magnetism-based definition of TC for the case of CrI3.

(C) Evolution of the TC distribution of the generated data for different batches.
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limit (10 K). A concept of data generation using intermediate ML

models is introduced to address this problem. The data genera-

tion-ML training coupled pipeline is schematically shown in

Figure 3A. The inputs from the first batch are truly random except

for the imposed physical constraints. The resulting data are then

used to train an initial deep neural network (DNN) model. While

generating the next batch of input parameters, in addition to

the previously mentioned physical constraints, it is ensured

that the DNN predicts the TC of these inputs to be in our desired

range. The resulting data are then again used to train another in-

termediate DNN, which is expected to be more accurate than its

predecessor. This process is repeated until we obtain z50,000

data points for each crystal type, then a 0.9:0.1 train-test split

(see experimental proceduress) is performed on these data,

and final DNNs are adequately trained and tested.

The massive MC process requires domain knowledge-based

engineering to determine the TC with enough precision in the

shortest possible time. To achieve this feat, we devise a bisec-

tion-based TC-searching technique. The MC engine is provided

with a lower and an upper limit of TC to search in between. For

the initial batch, this range for all points is 10–1,000 K, and for

ML-guided subsequent batches, this range is decided to be

TC�ML

=

2 to 3TC�ML

=

2. The MC-powered search for TC has been

performed in two stages. In the first stage, the entire range is

divided into six equally spaced points; for the initial batch, these

are 10 K, 200 K, 400 K, 600 K, 800 K, and 1,000 K. TheMC then is

run for these specific temperatures, and it is observed at what

point the magnetism has fallen close to zero. If the normalized

average magnetic moment (M) was close to 1 (>0.6) at point Tn
K but falls below 0.1 at point Tn+1 K, these two temperature

values are further passed down to another MC-based search en-
gine, the second stage that employs a six-step bisection process

to find the exact point of transition. Usually, we define the transi-

tion temperature as the temperature where the magnetic sus-

ceptibility (c) peaks, but this is difficult to identify by a bisection

search. Instead, we search for the temperature whereM reaches

an empirical value of 0.36. This value was decided upon after

rigorous testing on random and real materials data. In Figure 3B,

we show that for CrI3, this definition of TC yields an almost exact

match with its classical c peak-based counterpart. An oscillation

in M values is observed for a few input combinations despite

running each MC for 1.5 3 105 steps (MCS), and these points

are discarded.

The importance of the bisection process in accurately deter-

mining the TC is worth emphasizing. Locating the TC with a full

linear sampling scheme and reasonable accuracy in the large

temperature range can be highly tedious and might require sus-

ceptibility evaluation of about 100 temperature points in total.

Our employed combination of linear sampling and bisection

scheme can reach the same accuracy with a mere 12-point tem-

perature evaluation, accelerating the data-generation process

greatly.

Inevitably, the ‘‘curse’’ of low TC follows us into these valid da-

tasets despite the TC being in the desired range, as evident from

Figure 3C. In the initial batch, the TC distribution of the data ex-

hibits a massive peak at around 70 K compared with the mid-

and high-temperature regions. For ideal training, we would like

to have a nearly uniform distribution. To address this problem,

targeted inputs are generated using the intermediate MLmodels

in the subsequent batches to increase the TC density in high-

temperature regions. From Figure 3C, it can be seen that after

a while we end up with a double-peaked intermediate
Patterns 3, 100625, December 9, 2022 5



Figure 4. Distribution of Curie temperature with respect to spin

The blue-purple end of the color bar represents low density, whereas the red end represents high density.
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distribution with peaks at both low and high temperatures. To

rectify this, targeted inputs predicted to produce TC in the mid-

temperature regions are subsequently generated. This process

is repeated until we achieve a data distribution satisfactorily

close to a uniform distribution.

Figure 4 shows the distribution of TC with respect to probably

themost importantmaterial property,S, for all lattice types.Theef-

fect of coordination numbers is clearly visible here; the higher the

coordination, the more frequently the TC tends to be in the higher

region for the same values of S. The full distribution of all 20 input

features and TC for all lattice types is depicted in Figures S1–S5.

Accuracy of the models
A pictorial depiction of the performance of the final DNN models

on the unseen �5,000 test data points (for each crystal type) is

shown in Figure 5. An MAE of 11.85–20.36 K and R2 score of
6 Patterns 3, 100625, December 9, 2022
0.983–0.994 are recorded, which can be considered accurate

enough considering the large range of the data. As discussed

before, owing to the relative abundance of data at low tempera-

tures, the predictions are relatively more accurate there.

After testing the model accuracy on hypothetical data, we

examine the predictive prowess of the result produced by our

DFT-MC-based workflow for real experimental or computation-

ally predicted materials. Especially to the best of our knowledge,

no square 2D FM materials have yet been experimentally stud-

ied, and we can test our model only on computationally pre-

dicted materials. For other cases, too, experimentally studied

materials are supplemented with computationally predicted ma-

terials of our choosing to test the ML models’ accuracy thor-

oughly. The details are presented in Table 1. Our computational

pipeline and ML models predict the TC reasonably accurately for

the cases where experimental data are available. For the cases



Figure 5. Performance of the ML models on unseen test data

The yellow end of the color bar represents low density, while the dark purple end represents high density.
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where it is not available, we have referred to relevant computa-

tional studies whenever available. For both 1T and 2H phases

of monolayer VSe2, the TC values are underpredicted. This could

be a systemic problem with r2SCAN and element V. Also, the

DFT calculations are performed on freestanding monolayers,

and substrate effects have been ignored. The substrate-induced

effects, such as charge transfer and strain, can also contribute to

this discrepancy.5,42 These materials also show charge density

wave (CDW) nature at low temperatures that can couple with

the magnetism, affecting the prediction. There is controversy

around the claim of room-temperature ferromagnetism of mono-

layer 1T-VSe2.
6 Nevertheless, our methodology reproduces the

high-temperature FM nature of both the 1T and 2H phases of

VSe2. We also note that the workflow fails to predict the TC of

1T-CrTe2 accurately, albeit there is no report as yet of measure-
ment of TC at the monolayer/bilayer. Furthermore, the TC of 2D

CrTe2 exhibits strong anomalous layer dependence.43 For three

1T materials, VSe2, VTe2, and CrTe2, the atomic magnetic mo-

ments turn out to be fractional from DFT, and in turn the values

of S fall in between the discrete values with which our ML model

was trained. This leads to extremely unreasonable ML predic-

tions for these cases. The solution to this problem can be a sim-

ple refitting of the Hamiltonian, whereby the magnetic moment is

forced to be the nearest integer and the other parameter values

are adjusted automatically. The refitting process does not effec-

tively change the MC prediction of the TC but it enables the ML

prediction to regain its accuracy. Although the ML models

seem to be failing with interpolating values of S, they retain their

accuracy when tested with out-of-range values of J1 or Ad. For

the cases of CrO2_P-4m2, VSe2-2H, VSi2N4, and VSi2P4, the
Patterns 3, 100625, December 9, 2022 7



Table 1. Performance of DFT-MC workflow and ML models on real experimental and computationally predicted materials

Material S

J1
(meV/

link)

J2
(meV/

link)

J3
(meV/

link)

J4
(meV/

link)

K1x

(meV/

link)

K1y

(meV/

link)

K1z

(meV/

link)

K2x

(meV/

link)

K2y

(meV/

link)

K2z

(meV/

link)

K3x

(meV/

link)

K3y

(meV/

link)

K3z

(meV/

link)

K4x

(meV/

link)

K4y

(meV/

link)

K4z

(meV/

link)

Ax

(meV/

atom)

Ay

(meV/

atom)

Az

(meV/

atom)

Crystal

ty

TC-DFT-

MC

(K)

TC-

ML

(K)

TC-expt
(K)

CrPS4 1.50 5.93 0.07 0.67 �1.20 �0.21 �0.21 �0.21 �0.01 �0.01 �0.01 �0.01 �0.01 �0.01 0.05 0.05 0.05 6.72 6.72 6.73 2- 4-2 46.65 32.90 23

(monolayer),

Son et al.44

CrPSe4 1.50 7.12 0.08 1.14 �0.88 �0.56 �0.56 �0.56 �0.04 �0.04 �0.03 �0.11 �0.11 �0.12 0.15 0.15 0.16 40.05 40.05 40.05 2- 4-2 50.00 57.04 N/A, Deng

et al.45

CrPTe4 1.47 9.04 0.52 3.66 �0.63 0.37 0.37 0.73 �0.09 �0.09 0.33 �0.23 �0.23 �0.33 �0.18 �0.18 �0.15 198.45 198.45 198.02 2- 4-2 147.83 141.17 N/A, Deng

et al.45

CrSBr 1.50 4.58 6.21 4.22 0.04 �0.23 �0.20 �0.21 �0.03 �0.03 �0.03 �0.07 �0.08 �0.08 0.05 0.05 0.05 16.91 16.88 16.87 2- 2-4 205.33 214.57 146

(monolayer),

Lee et al.46

CrSeBr 1.50 3.10 6.61 2.26 0.03 �0.46 �0.40 �0.41 0.02 0.01 0.00 �0.26 �0.26 �0.26 0.14 0.15 0.15 24.76 24.71 24.69 2- 2-4 174.08 179.36 N/A,

Wang et al.47

Cr2Ge2
Te6

1.50 6.64 0.04 0.33 0.00 �0.31 �0.31 �0.01 0.02 0.02 0.01 0.12 0.12 �0.01 0.00 0.00 0.00 136.27 136.27 136.05 3- 3-6 67.29 78.87 66

(bilayer),

Gong et al.2

CrBr3 1.50 2.39 0.23 �0.05 0.00 �0.37 �0.37 �0.37 0.01 0.01 0.01 �0.04 �0.04 �0.02 0.00 0.00 0.00 40.26 40.26 40.31 3- 3-6 31.43 32.23 27–34

(monolayer),

Kim et al.

and Zhang

et al.38,39

CrCl3 1.50 1.82 0.13 �0.04 0.00 �0.21 �0.21 �0.21 �0.01 �0.01 �0.01 0.00 0.00 0.00 0.00 0.00 0.00 7.13 7.13 7.14 3- 3-6 19.50 24.15 16 (bilayer),

Kim et al.38

CrI3 1.50 3.04 0.48 �0.05 0.00 �0.57 �0.57 �0.37 0.01 0.01 0.02 0.12 0.12 �0.03 0.00 0.00 0.00 173.52 173.52 173.64 3- 3-6 53.52 49.42 45

(monolayer),

Huang et al.1

CrO2_

P-4m2

1.00 65.22 0.07 5.71 �2.79 0.16 0.16 0.13 0.02 0.02 0.04 0.16 0.16 0.10 0.02 0.02 0.03 9.86 9.86 9.89 4- 4-8 429.17 473.96 N/A, Kabiraj

et al.19

MnO2_

P-4m2

1.50 31.08 �3.87 �10.74 2.11 0.06 0.06 0.10 �0.08 �0.08 �0.07 0.25 0.25 0.22 �0.19 �0.19 �0.20 4.53 4.53 4.73 4- 4-8 100.83 126.30 N/A, Kabiraj

et al.19

CrTe2 1.30 0.56 1.34 �0.76 0.00 0.36 0.36 0.24 0.09 0.09 0.14 0.05 0.05 �0.15 0.00 0.00 0.00 135.62 135.62 135.16 6- 6-12 40.58 �22.52 213

(few layers),

Meng et al.43

CrTe2_

refit_

high

1.50 0.42 1.01 �0.57 0.00 0.27 0.27 0.18 0.06 0.06 0.10 0.04 0.04 �0.11 0.00 0.00 0.00 101.86 101.86 101.51 6- 6-12 40.42 45.63 213

(few layers),

Meng et al.43

CrTe2_

refit_

low

1.00 0.95 2.27 �1.28 0.00 0.61 0.61 0.41 0.15 0.15 0.24 0.08 0.08 �0.25 0.00 0.00 0.00 229.19 229.19 228.40 6- 6-12 41.57 39.46 213

(few layers),

Meng et al.43

(Continued on next page)
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Table 1. Continued

Material S

J1
(meV/

link)

J2
(meV/

link)

J3
(meV/

link)

J4
(meV/

link)

K1x

(meV/

link)

K1y

(meV/

link)

K1z

(meV/

link)

K2x

(meV/

link)

K2y

(meV/

link)

K2z

(meV/

link)

K3x

(meV/

link)

K3y

(meV/

link)

K3z

(meV/

link)

K4x

(meV/

link)

K4y

(meV/

link)

K4z

(meV/

link)

Ax

(meV/

atom)

Ay

(meV/

atom)

Az

(meV/

atom)

rystal

pe

TC-DFT-

MC

(K)

TC-

ML

(K)

TC-expt
(K)

MnSe2 1.50 7.44 0.41 �2.04 0.00 �0.14 �0.14 �0.08 0.11 0.11 0.11 0.01 0.01 0.03 0.00 0.00 0.00 24.31 24.31 24.24 6-6-12 91.00 124.18 >300

(thick MnSex),

O’Hara et al.7

VSe2-1T 0.56 21.90 17.79 14.55 0.00 0.13 0.13 �0.45 �0.32 �0.32 0.20 0.06 0.06 0.30 0.00 0.00 0.00 161.98 161.98 161.35 6-6-12 271.50 938.19 >300

(monolayer),

Bonilla et al.5

VSe2-

1T_

refit

0.50 27.04 21.96 17.96 0.00 0.16 0.16 �0.56 �0.40 �0.40 0.25 0.08 0.08 0.37 0.00 0.00 0.00 199.98 199.98 199.20 6-6-12 280.00 274.35 >300

(monolayer),

Bonilla et al.5

VSe2-2H 0.50 141.99 �5.02 �7.26 0.00 0.74 0.74 0.08 �0.49 �0.49 �0.38 �0.21 �0.21 �0.23 0.00 0.00 0.00 194.13 194.13 194.25 6-6-12 332.38 339.44 430

(few layers),

Wang et al.6

VSi2N4 0.50 120.45 9.36 �1.59 0.00 0.43 0.43 0.29 0.03 0.03 0.06 0.13 0.13 0.13 0.00 0.00 0.00 30.11 30.11 30.16 6-6-12 402.00 388.40 N/A, Akanda

and Lake48

VSi2P4 0.50 93.62 �6.84 3.83 0.00 �0.43 �0.43 �0.51 0.08 0.08 0.04 0.00 0.00 0.02 0.00 0.00 0.00 37.81 37.81 37.87 6-6-12 257.04 264.99 N/A, Akanda

and Lake48

VTe2-1T 0.63 �3.27 10.99 15.62 0.00 0.35 0.35 0.04 �1.51 �1.51 �0.92 �0.34 �0.34 �0.33 0.00 0.00 0.00 540.32 540.32 539.15 6-6-12 149.88 402.54 N/A

VTe2-1T_

refit

0.50 �5.11 17.18 24.41 0.00 0.55 0.55 0.06 �2.36 �2.36 �1.44 �0.53 �0.53 �0.51 0.00 0.00 0.00 844.32 844.32 842.48 6-6-12 150.00 152.57 N/A
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Figure 6. Permutation feature importance analysis of the models

The red vertical line indicates the baseline drop-out loss, i.e., the drop-out loss when all features are permutated together.
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values of J1 far exceed the training limit of 20 meV/link. A similar

example can be seen for the case of refitted VTe2-1T , where the

values of Ad exceed the training limit of 300 meV/atom.

It is remarkable to note that the DFT-MC-based predictions

listed in Table 1 have been obtained using the c peak-based

definition of TC, whereas the ML model is trained with the data

generated with our empirical magnetism-based definition. The

close match between the two predictions reaffirms the correct-

ness of the empirical definition.

Interpretability of the models
To draw physical insights from the models, next we perform a

global interpretability analysis spanning the whole datasets. We

select the permutation feature importance (PFI)49,50 scheme as

the ideal analysis tool for this kind of regression problem. Under

this scheme, first, the original model error over the whole data-

set is estimated: eorig = Lðy; bf ðXÞÞ, where bf is the trained

model, X is the input feature matrix, y is the target vector con-

taining the TC-MC values, and Lðy; bf Þ is the loss function or error

measure, which is chosen to be MAE here. Then for each
10 Patterns 3, 100625, December 9, 2022
feature q, a separate feature matrix Xperm�q is generated by

randomly shuffling or permuting the feature column. This pro-

cedure breaks the association between the feature and the

true target y. Next, the permutation error is estimated based

on the predictions of the permuted data; eperm�q = Lðy;bf ðXperm�qÞÞ. Finally, the PFI for this feature is calculated as

PFIq = eperm�q � eorig. The PFIq score is indicative of how

much the model depends on the particular feature q. In Figure 6

we graphically represent the results of this analysis for all crys-

tal types. For all the cases, the value of S proved to be the most

important, followed by the Jp features (p = 1, 2, 3, 4), followed

by the exchange and on-site anisotropy parameters. The higher

importance of the isotropic exchanges compared with the

anisotropy parameters can perhaps be guessed just by a

manual inspection of the data, but the unanimous highest

importance score of S is a surprise and perhaps originates

from the fact that every term of the Hamiltonian is multiplied

by the square of S. For the two most highly coordinated crystal

types, 4-4-4-8 and 6-6-6-12, the importance of S seems to be

more than that of all the features combined.



Figure 7. Shapley analysis of the ML models for two materials, CrI3 and 2H VSe2
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For two real 2D FM materials, the first one perhaps being the

most famous of them all, CrI3 (crystal type 3-6-3-6),
1 and the sec-

ond one being a high-temperature ferromagnet, 2H VSe2 (crystal

type 6-6-6-12),6 we perform local interpretability analysis using

Shapley scores. The scores with relevant context are pictorially

illustrated in Figure 7. The Shapley method is a game-theory-

based approach that, for a particular prediction, tells us which

feature contributed how much to the process of arriving at the

true prediction from the expected or average prediction of the

model.51,52 For the 3-6-3-6model, the expected prediction value

of the model is 452.42 K over the whole dataset, while the actual

predicted value for CrI3 is 49.41 K.We see that J4 contributes the

most to reach the actual value, a huge �272.65 K. This might

seem somewhat surprising considering the J4 value is 0 for

CrI3. The training data distribution can explain the origin of this

apparent anomaly. While generating the inputs, we gave equal

weight to all four Jp, as seen from the data distribution. In nature,

however, the further one goes from the reference site, usually the

less the effect of the exchange interaction should become. Un-

fortunately, we could not find a way to incorporate this effect

into the input data. As a result, the 0 value of J4 helps most in
bringing down the mean prediction value to the actual value.

The second-largest contribution comes from J2, at �141.18 K.

For CrI3 the J2 value is only 0.48 meV/link, and the enormous

negative contribution can again be explained by the same logic.

This is also the case for J3 =�0.04meV/link, contributing�72.55

K. Unsurprisingly, both J1 = 3.04 meV/link and S = 1.5 contribute

positively to raising the average prediction 13.86 K and 127.52 K.

For the 6-6-6-12model, the expectedprediction value is 459.8K

while the actual predicted value for 2H VSe2 is 339.44 K. Like the

previous case, here also a large negative contribution of J4 =

0 and a large positive contribution of S = 0.5 is observed

(�364.78 K and 343.62 K). The unusually strong negative J2 =

�5.02 meV/link contributes highly positively (110.62 K), while the

out-of-training-range J1 = 141.99meV/link contributesmildly posi-

tively (20.14 K). We conclude that because of the large positive J1
and large negative J2 values, this becomesa peculiar case to inter-

pretas themodelovercompensates for thesevalueswithother fea-

tures. However, it is remarkable that despite dealingwith such out-

of-range input, the prediction of the model remains exact.

It is worth mentioning that there have been attempts to build

data-driven mean-field-like models to predict the values of TC
Patterns 3, 100625, December 9, 2022 11
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of 2D FMmaterials, which rely on the assumption that TC holds a

linear relationship with quantities such as JpS
2, KpdS

2, and

AdS
2.23 In our exhaustive experiment with a quarter of a million

data points, however, we found absolutely no linear relationship

between JpS
2 and TC, as depicted in the plots of Figure S6 for the

typical case of 6-6-6-12, and thus conclude such linear models

are not good enough to capture the complex relationship of TC
with the material parameters.

We have attempted to develop a ‘‘unified’’ single model for all

crystal types. To this end, four additional features, CN1, CN2,

CN3, and CN4, are added to the existing list of 20 input features

because they succinctly carry the crystal structure information.

However, despite an extensive model search and training, we

were unable to find a model that could match the prediction ac-

curacy of the models developed for individual crystal types.

Perhaps data enrichment or augmentation with additional crystal

features, training withmore data, or combining both can improve

the unified model’s performance, but this is beyond the scope of

this work. The same unified model can also be used to predict

the TC of any unknown crystal if the chosen crystal features are

easy to calculate.

From our PFI analysis, it has been confirmed that the major

players that determine the TC of 2D materials are S and the Jp
terms, while Kpz and Az terms contribute minimally. Note that

in the MC process, all terms, small or large, take up nearly equal

time for the multiplication operations. Therefore, to produce a

‘‘quick’’ dataset for training the very first intermediate model,

one can perhaps omit the anisotropy terms and still end up

with a reasonable model. This does not make sense physically,

as the anisotropy is solely responsible for lifting the Mermin-

Wegner restriction in two dimensions, but instead can be used

as a ‘‘numerical trick.’’ Of course, for precise prediction of TC,

the anisotropy terms must be included in the MC process for

subsequent batches.

As mentioned, the lack of data for training a reliable ML model

is typical for materials science problems. Another problem can

be highly skewed data similar to those of this work. Our devel-

oped concept of ML-guided data generation can be useful for

these cases to obtain a near-uniform output distribution.

To summarize, in this work we have developed a DFT-MC-

based automated computational pipeline that can accurately

predict the transition temperatures of any 2Dmagnetic materials

from its crystal structure without any empirical corrections.

Continuing with the same spin Hamiltonian, we generate a

quarter of a million hypothetical materials data by sampling the

input space nearly uniformly and by performing a massive

amount of MC simulations with this input set. ML models are

trained on these data to build highly accurate TC predictors

that can perform the job of the computationally heavy MC pro-

cess in the blink of an eye. The interpretability of these models

is also explored. Our work might help scientists to discover

high-temperature 2D magnets rapidly and with ease.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information should be directed to and will be fulfilled by

the lead contact, Santanu Mahapatra (santanu@iisc.ac.in).
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Materials availability

This computational study did not generate any new unique reagents.

Data and code availability

The authors declare that themain data supporting the findings of this study are

available within the paper and its supplemental files. Original data have been

deposited to Figshare: https://doi.org/10.6084/m9.figshare.20439309. All the

datasets and ML models are freely available here. Other relevant data are

available from the lead contact upon reasonable request.

A rolling release of the developed automated python code for TC or TN pre-

diction, e2e_v2, is available at https://github.com/arnabkabiraj/e2e_v2/. A

frozen version of the code that can be used to reproduce the results presented

in the paper is available at https://doi.org/10.5281/zenodo.7276466. The de-

tails about obtaining VASP, a proprietary code, can be found at https://

www.vasp.at/.

DFT calculations

DFT calculations of this work are carried out using ameta-generalized gradient

approximation (meta-GGA) as implemented in the code Vienna Ab Initio Simu-

lation Package (VASP)53–56 with the Projector-Augmented-Wave (PAW)57

method using the r2SCAN exchange-correlation functional.32 The Materials

Project58 recommended pseudopotentials (https://docs.materialsproject.

org/methodology/mof-methodology/calculation-parameters/

psuedopotentials) have been used throughout. Sufficiently large cutoff energy

of 520 eV is used to avoid Pulay stress. A gamma-centered k-points grid with

reciprocal density 150 Å�3 is used to sample the Brillouin zone for all structural

relaxations. A similar k-mesh with reciprocal density 300 Å�3 is employed for

all static runs, including the non-collinear ones. Electronic convergence is

set to be attained when the difference in energy of successive electronic steps

becomes less than 10�6 eV, whereas the structural geometry is optimized until

themaximumHellmann-Feynman force on every atom falls below 0.01 eV/Å. A

large vacuum space of 25 Å in the vertical direction is applied to avoid any

spurious interaction between periodically repeated layers. All crystal struc-

tures are visualized using the tool VESTA.59 The python libraries pymatgen (Py-

thon Materials Genomics) and custodian60 have been used extensively in the

high-throughput pipeline code to achieve full automation. The library Atomic

Simulation Environment (ASE)61 has also been used for some operations.

The automated workflow uses theMagneticStructureEnumerator class from

the pymatgen.analysis.magnetism.analyzer module to generate the different

spin configurations. For the different AFM configurations, this usually means

making suitable supercells from the unit cell to accommodate the possible

spin configurations. To locate the ground state, i.e., the most stable spin

configuration, all of these configurations are fully relaxed, whereby both the

atomic and lattice degrees of freedom are allowed to change. Once the ground

state is identified, we only proceed further with that particular structure: a

larger uniformly sized supercell is constructed from this structure which can

accommodate all the spin configurations, and all static runs are performed

on this supercell only, which ultimately provides us with the magnetic param-

eters of the material. To summarize, the supercells are relaxed only to locate

the ground state, but all the static runs are performed on a supercell con-

structed from this ground state, only changing the spin directions. The ratio-

nale behind this choice is as follows: relaxing the supercells can often lead

to additional energetic stability via undesired symmetry breaking,62 or even

digression towards a CDW ground state.63 The FM state, however, is usually

determined from the unit cell and therefore does not incorporate the effect

of symmetry breaking in larger supercells. Thus, erroneous predictions of

the magnetic parameters might ensue if the supercells are allowed to relax.

On the other hand, the relaxation process to find the ground state includes

the effect of symmetry breaking or CDW and establishes the state’s superla-

tive stability beyond doubt. If there is no significant energy gain via symmetry

breaking or CDW transition, the effect of relaxing the structures to obtain the

magnetic parameters is usually negligible. We test our workflow using the

GGA + U methodology with the well-regarded values of U = 2.7 eV and J =

0.7 eV64–66 (with the rotationally invariant DFT + U method introduced by

Liechtenstein et al.67) for the materials CrI3 and CrBr3 and found the TC to be

42 K and 24 K, respectively, extremely close to the experimental reports.1,38

One advantage of this choice is that if one is sure of the ground-state struc-

ture beforehand, they can simply relax the structure to this ground state once

and then directly use this to find themagnetic parameters instead of relaxing all

mailto:santanu@iisc.ac.in
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the spin configurations. Our code allows this using input ‘‘relax_struc-

tures = False.’’

The different spin configurations (with the structural information of the

ground state) and their collinear and non-collinear total energies for all

the materials listed in Table 1 are provided in Data S1. Note that the mag-

netic moments of these spin configurations are taken directly from

the VASP OUTCAR files, which only account for the magnetism in a

sphere of a fixed radius (defined by the RWIGS tag) around the ionic posi-

tions and therefore might not always be accurate, as the volume of the

magnetic ions might change with different spin configurations. However,

these configurations can clearly be identified by the signs of the magnetic

moments.

MC simulations

To study the FM-to-PM transition of the 2D materials, MC simulations of the

aforementioned Hamiltonian have been performed using the Metropolis algo-

rithm with the single-spin update scheme. A 64 3 64 supercell with in-plane

periodic boundary conditions containing 4,096 magnetic sites has been

used to simulate the 2D systems to eliminate the size effects. In total,

1.53 105Monte Carlo steps (MCS) have been performed for each temperature

while the results from the first 0.53 105 steps have been discarded, as the sys-

tem is allowed to equilibrate or thermalize during this time. The final values of

magnetization and susceptibility are calculated as the average over the last

105 MC steps for each temperature. The massive amount of MC simulations

was performed parallelly on thousands of cores of a supercomputer, each

core handling a different material at a time.

Machine learning

The selection of the training set plays a crucial role in the fitting of the ML

model. The set should contain samples that are the best representation of

the input space, making the training generalized and the training model closer

to the actual function to be learned. The training data from a fully random test-

train split might not fulfill this criterion. Here we have used the Latin Hypercube

Sampling (LHS)68 scheme to generate the training set with maximum repre-

sentation. The idaes.surrogate.pysmo.sampling.LatinHypercubeSampling

class from the IDAES Toolkit (https://github.com/IDAES/idaes-pse) has been

used to generate the z45,000 samples for each crystal type. The models

trained on the LHS-sampled data produce much better predictions on unseen

test sets than the fully random splitting.

The DNN models were identified and trained using the autoML library

AutoKeras (https://github.com/keras-team/autokeras).69 Based on the per-

formance on a validation set, AutoKeras automatically finds the best neural

architecture and hyperparameters, such as the optimizer type, learning rate,

and batch size, for training. After rigorous testing, the MAE was selected as

the ideal loss function to be minimized, as it consistently outperformed other

available loss functions in terms of validation set prediction. The last 20% of

training data were kept as the validation set, which is the default for

AutoKeras. The autokeras.StructuredDataRegressor class was used to

find and train the models. The default values of 1,000 epochs and early stop-

ping with patience equal to 30 are used for the fitting. The objective of fitting

was to minimize the loss on the validation set. A maximum of 300 trials were

performed. AutoKeras uses KerasTuner (https://github.com/keras-team/

keras-tuner) as the hyperparameter optimizer backend, and the default

values were used there as well.

For the interpretability analysis, the moDel Agnostic Language for Explora-

tion and eXplanation or DALEX (https://github.com/ModelOriented/DALEX)

package was used.70 The whole datasets were fed to the dalex.Explainer

class, and the model_parts method of this class was used to perform the

PFI analyses. All data were sampled, and 20 permutation rounds were per-

formed on each feature. The predict_parts method from the same class was

used to obtain the Shapley scores. For each case, all data were sampled, a to-

tal of 50 random paths were explored, and the mean scores from all these

paths were taken as the final Shapley scores.
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Learning, 119, Hal Daumé, III and Aarti Singh, eds. (PMLR), pp. 9269–9278.

https://proceedings.mlr.press/v119/sundararajan20b.html.

53. Kresse, G., and Hafner, J. (1993). Ab initio molecular dynamics for liquid

metals. Phys. Rev. B Condens. Matter 47, 558–561. https://doi.org/10.

1103/PhysRevB.47.558.

54. Kresse, G., and Hafner, J. (1994). Ab initio molecular-dynamics simulation

of the liquid-metal–amorphous-semiconductor transition in germanium.

Phys. Rev. B Condens. Matter 49, 14251–14269. https://doi.org/10.

1103/PhysRevB.49.14251.

55. Kresse, G., and Furthm€uller, J. (1996). Efficient iterative schemes for ab in-

itio total-energy calculations using a plane-wave basis set. Phys. Rev. B

Condens. Matter 54, 11169–11186. https://doi.org/10.1103/PhysRevB.

54.11169.

56. Kresse, G., and Furthm€uller, J. (1996). Efficiency of ab-initio total energy

calculations for metals and semiconductors using a plane-wave basis

set. Comput. Mater. Sci. 6, 15–50. https://doi.org/10.1016/0927-

0256(96)00008-0.

57. Kresse, G., and Joubert, D. (1999). From ultrasoft pseudopotentials to the

projector augmented-wave method. Phys. Rev. B 59, 1758–1775. https://

doi.org/10.1103/PhysRevB.59.1758.

58. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S.,

Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A. (2013).
Commentary: the materials project: a materials genome approach to

accelerating materials innovation. Apl. Mater. 1, 011002. https://doi.org/

10.1063/1.4812323.

59. Momma, K., and Izumi, F. (2011). VESTA 3 for three-dimensional visualiza-

tion of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44,

1272–1276. https://doi.org/10.1107/S0021889811038970.

60. Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S.,

Gunter, D., Chevrier, V.L., Persson, K.A., and Ceder, G. (2013). Python

Materials Genomics (pymatgen): a robust, open-source python library

for materials analysis. Comput. Mater. Sci. 68, 314–319. https://doi.org/

10.1016/j.commatsci.2012.10.028.

61. Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E.,

Christensen, R., Du1ak, M., Friis, J., Groves, M.N., Hammer, B., Hargus,

C., et al. (2017). The atomic simulation environment—a Python library for

working with atoms. J. Phys. Condens. Matter 29, 273002. https://doi.

org/10.1088/1361-648x/aa680e.

62. Liu, L., Chen, S., Lin, Z., and Zhang, X. (2020). A symmetry-breaking phase

in two-dimensional FeTe2 with ferromagnetism above room temperature.

J. Phys. Chem. Lett. 11, 7893–7900. https://doi.org/10.1021/acs.jpclett.

0c01911.

63. Kabiraj, A., and Mahapatra, S. (2020). Machine-intelligence-driven high-

throughput prediction of 2D charge density wave phases. J. Phys.

Chem. Lett. 11, 6291–6298. https://doi.org/10.1021/acs.jpclett.0c01846.

64. Lado, J.L., and Fern’ndez-Rossier, J. (2017). On the origin of magnetic

anisotropy in two dimensional CrI3. 2D Mater. 4, 035002. https://doi.org/

10.1088/2053-1583/aa75ed.

65. Webster, L., and Yan, J.-A. (2018). Strain-tunable magnetic anisotropy in

monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 98, 144411. https://doi.

org/10.1103/PhysRevB.98.144411.

66. Wu, Z., Yu, J., and Yuan, S. (2019). Strain-tunable magnetic and electronic

properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750–7755.

https://doi.org/10.1039/C8CP07067A.

67. Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J. (1995). Density-func-

tional theory and strong interactions: orbital ordering in Mott-Hubbard in-

sulators. Phys. Rev. B Condens.Matter 52, R5467–R5470. https://doi.org/

10.1103/PhysRevB.52.R5467.

68. Swiler, L., Slepoy, R., and Giunta, A. (2006). Evaluation of sampling

methods in constructing Response Surface approximations. In 47th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference (Reston, VA, USA: American Institute of

Aeronautics and Astronautics), pp. 1827–1851. https://doi.org/10.

2514/6.2006-1827.

69. Jin, H., Song, Q., and Hu, X. (2019). Auto-keras: an efficient neural archi-

tecture search system. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining KDD

’19 (Association for Computing Machinery), pp. 1946–1956. https://doi.

org/10.1145/3292500.3330648.
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