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SUMMARY

The ultra-large surface-to-mass ratio of two-dimensional (2D) mate-
rials has made them an ideal choice for electrodes of compact
lithium (Li)-ion batteries and supercapacitors; however, only a small
fraction of the massive 2D material space has been investigated for
such applications. Here, combining explicit-ion and implicit-solvent
formalisms, we develop an automated, first-principles-based, high-
throughput computational framework to assess thousands of such
materials. We define four descriptors to map ‘‘computationally
soft’’ single-Li-ion adsorption to ‘‘computationally hard’’ multiple-
Li-ion-adsorbed configuration located at global minima for insight
finding and rapid screening. Leveraging this large dataset, we also
develop crystal-graph-based machine learning models for the accel-
erated discovery of potential candidates. A reactivity test with com-
mercial electrolytes is further performed for wet experiments. Our
holistic approach, which predicts both Li-ion storage and supercapa-
citive properties and hence identifies various important electrode
materials that are common to both devices, may pave the way for
next-generation energy storage systems.

INTRODUCTION

With the rapid emergence of electric vehicles in recent times, there is demand for

providing sustainable, economically viable, and lightweight energy storage sys-

tems.1 The immediate solution so far has been the lithium (Li)-ion battery (LIB)2,

but supercapacitors and supercapacitor-battery hybrid systems have been pro-

posed as a viable long-term alternative. This recognition arises since these systems

have sizable power density; long cycle life; extremely fast charging/discharging

speed; high input/output current capability; simple charging and discharging cir-

cuits; decent low/high-temperature operations; and most importantly, small size,

low weight, and low cost.3 In the quest for lighter and smaller energy storage de-

vices, electrode materials with high surface-to-volume and surface-to-mass ratios

(high specific areas) are highly desired for both batteries and supercapacitors. Since

the successful exfoliation of graphene,4 two-dimensional (2D) materials have at-

tracted tremendous interest in this field.5–7 However, most research efforts, both

computational and experimental, have been directed toward LIBs.8–10 Experimental

research on 2D materials-based supercapacitors has escalated in the recent

past,11,12 but computational studies of these materials as supercapacitor electrodes

have been scarce. The extensive treatment of the electrolyte and requirement of

grand canonical calculations to simulate the applied voltage makes these studies

extremely challenging.13,14 However, significant strides in these domains have

been made recently,15–21 resulting in tools such as joint density-functional theory

(JDFT)22 that allow accurate calculation of the electrochemical properties of any

solid surfaces using an implicit and continuum solvation model. Recently, this tool
Cell Reports Physical Science 3, 100718, January 19, 2022 ª 2021 The Author(s).
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has been used successfully to analyze the phenomenon of under-potential deposi-

tion (UPD) of Cu on Pt[111] surface14 and to accurately predict supercapacitive per-

formances of Ag[100] surface,20,21 graphene, and various borophene phases.23–25

Similarly, the introduction of new techniques such as global minima searching for

determining cation storage capacities of 2D materials, such as MoS2, ReS2, and

VS2, have resulted in much more realistic predictions, albeit at the cost of a high

computational budget.26–28

At the same time, recent advances in computational methodologies have also

spurred several high-throughput computational studies, resulting in many generic

2Dmaterial databases that contain both synthesized and theoretically predictedma-

terials.29–35 Several first-principles-based studies have focused on these databases

to find exceptional application-specific 2D materials, such as materials with

nontrivial topological order,36 high-temperature ferromagnetism,37 excellent cata-

lytic activity for hydrogen evolution,38 water-splitting photocatalysis,39 and exotic

charge density wave (CDW) properties.40 However, due to the computation chal-

lenges, the prediction of energy storage capacity of these materials has not yet

been attempted by any high-throughput study; hence, the enormous 2D material

space has remained mostly unexplored.

In this work, based on explicit-ion and implicit-solvent formalisms, we develop a

high-throughput computational framework to assess thousands of 2D electrode ma-

terials for LIB and supercapacitors. From the DFT-calculated single-Li (SL)-binding

properties of a material, we devise four descriptors to estimate its maximum Li-ion

storage capacity. After analyzing a total of 1,941 materials from a database (Compu-

tational 2D Materials Database or C2DB),34,35 we define precise ranges of these de-

scriptors, translating to a high specific capacity. Such descriptors-based mapping

from simple SL-ion to complexmulti-Li-ion adsorption is validated using the rigorous

global-minima-searching technique. We then use a series of JDFT calculations (i.e.,

DFT combined with implicit solvent and fixed-potential grand canonical) to estimate

the supercapacitive performance of 3,691 materials from the same database. This

massive computational result is then used to develop crystal-graph-based machine

learning (ML) models for accelerated prediction of the descriptors for Li-ion storage

and the specific capacitance. We find several potential materials from other data-

bases using theMLmodels. We also examine the reactivity of thesematerials against

commercial electrolytes using DFT calculations. Our all-inclusive computational

approach, which discovers several potential electrode materials for both LIB and

supercapacitors, may pave the way for the practical application of 2Dmaterial-based

energy storage systems.
RESULTS

Overview of high-throughput computational framework

The computational framework developed in this work is outlined in Figure 1. Among

many available 2Dmaterials databases,29–35 we begin our study with C2DB. The ma-

terials of C2DB have been explored by a ‘‘systematic combinatorial approach’’

where almost all known layered exfoliable materials are covered,29 and by substitut-

ing different species, a host of new materials were predicted. The latest version of

C2DB35 also contains various alloyed 2D materials. This kind of variation is ideal

for training ML models, which is one of our primary goals. Also, recent synthesis of

species-substituted 2D materials41 and solid solutions42,43 with no bulk analogs

has made practical applications of this kind of ‘‘synthetic’’ 2D materials possible.

C2DB contains several material properties of interest, including bandgap,
2 Cell Reports Physical Science 3, 100718, January 19, 2022



Figure 1. Schematic of the high-throughput workflow combining DFT and ML
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thermodynamic stability, and energy above the convex hull, which helps us estimate

the usefulness and the chance of potential synthesis of these materials. After some

initial screening (discussed later), the figure of merits (FOMs) of around 2,000 mate-

rials are calculated for Li-ion storage application, while the FOMs of more than 3,500

materials are calculated for supercapacitor electrode application. The computa-

tional cost for examining the suitability of a material as a supercapacitor anode is

far less than that of examining the same material’s merit as a LIB electrode. In the

former case, a reasonable implicit electrolyte model is assumed, while the latter ex-

amination requires dealing with explicit Li-ion and several lattice optimizations. The

crystal structure to FOM mapping is then learned using a state-of-the-art crystal

graph neural network. With reasonable accuracy, these ML models are then used

to rapidly screen new materials from other 2D materials databases, and ultimately

the ML predictions are verified using rigorous (J)DFT-based methodology. This en-

ables the discovery of new and interesting materials at an accelerated pace.
Choice of the descriptors for Li-ion adsorption

The ultimate FOM for materials as LIB electrodes is the specific capacity, which indi-

cates how much charge the material can store per unit mass via Li-ion adsorption.

The other two important FOMs are the average open circuit voltage that ultimately

decides the cell voltage and the activation energies for the diffusion of the Li-ion that

indicates how fast the material can be charged.28,44 The activation energy estima-

tions involve extremely rigorous and equally expensive nudge elastic band (NEB)

calculations for every possible Li-ion diffusion path, which simply cannot be done

in a high-throughput manner. We therefore focus solely on the Li-ion storage capac-

ity of the materials in this work. The average open circuit voltage with the maximum

amount of adsorbed Li-ion can simply be estimated as the absolute value of the

binding energy per Li-ion. These quantities are calculated from the following

equations:28

BE =
Emat+ Li � Emat � nmLi

n
½eV� (Equation 1)
Cell Reports Physical Science 3, 100718, January 19, 2022 3
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OCVzabs

�hELixmaxmat � ELixmin
mat � ðxmax � xminÞmLi

i
ðxmax � xminÞe

�
½V� (Equation 2)

where BE signifies the average binding energy per Li-ion, Emat+ Li is the energy of n

number of Li-ion-adsorbed 2Dmaterial system, Emat is the energy of monolayer sub-

strate, mLi is the chemical potential (cohesive energy per atom) of bulk Li,OCV is the

average open-circuit voltage of maximum number of Li-adsorbed 2Dmaterial, xmin =

0 is the amount of Li per formula unit of 2D material in initial pristine form, xmax is the

maximum amount of Li per formula unit the material can store, and e is the electronic

charge. Clearly,OCV equals to the absolute value of BE with these definitions. Note

that when the material is being examined as an anode, a low value ofOCV is desired

to maximize the cell voltage. However, if the material is viewed as a prospective

cathode, the converse is required.

In addition to these quantities, the specific capacity ðSCÞ of a material is determined

from the following equation:

SC =
1

MWmat

�
xmaxvF:10

3
�½mAh=g� (Equation 3)

where MWmat is the molecular weight of the material, F = 26:801 Ah/mol is the Far-

aday’s constant, and v = 1 is the number of valence electrons for Li.

There have already been a plethora of first-principles-based studies to examine the

suitability of various 2D materials as LIB electrodes10,45 using the ‘‘uniform adsorp-

tion’’ model. This is the probable reason that the computed specific capacities are

usually vastly overestimated compared with the experimental findings.44,46 Rigorous

global-minima-searching-based computational studies have highlighted the limita-

tions of the ‘‘uniform-adsorption’’ model, while predicting the most stable cation-

adsorbed phase and the corresponding specific capacity for 2D materials.26–28

Moreover, the conventional model-based studies cannot incorporate the non-ideal

effects of multiple charging-discharging cycles, such as bond breaking and forma-

tion, the phase change of adsorbent, irreversible Li adsorption, electroplating,

and so on. In such cases, the uniform-adsorption-predicted theoretical specific ca-

pacity might match the experimental values for the first few cycles, but rapid capacity

fading soon reduces the quantity to a much lower reversible ‘‘effective capac-

ity.’’28,47 All of these studies indicate that a structure-searching procedure must be

used to determine the realistic Li storage capacity of a 2D material. These proced-

ures are extremely expensive computationally as they often involve hundreds of

large-supercell lattice optimizations for a single material and therefore are unsuit-

able for examining thousands of materials in a high-throughput manner. However,

the study of adsorption of a single Li-ion in a 2D material is much more straightfor-

ward, computationally cheaper, and requires only a few tens of lattice optimizations

or ionic relaxations at most. In this work, we observe how different 2D materials

behave when a single Li-ion gets absorbed in them, and from the adsorbed relaxed

structures, we obtain suitable relevant descriptors that help us in extrapolating how

the material would behave when storing a ‘‘full-house’’ of Li-ions. At maximum ad-

sorbed concentration, to minimize the system energy, usually, all the Li-ions are

held at the most stable binding site, which can easily be determined from SL adsorp-

tion studies. However, any material can have multiple binding sites, and ideally,

these sites should be discovered with suitable random structure searching, espe-

cially if the material lacks symmetry.28,48 Nevertheless, if the material is symmetric,

the possible binding sites can be identified from manual inspection, as the binding
4 Cell Reports Physical Science 3, 100718, January 19, 2022
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sites are usually located either ‘‘on top’’ of the surface atoms or at the ‘‘hollow’’ or

‘‘bridge’’ sites. Based on this intuition, an algorithm was recently developed that

can triangulate and enumerate the possible binding sites for any surface, which

has been carefully verified and subsequently refined with experimental results in

terms of binding energies, also called adsorption energies.49 Based on this algo-

rithm, we develop a fully automated high-throughput code that places a single Li-

ion on these possible binding sites of any 2D material and finds the most stable

SL-adsorbed structure via DFT-based atomic relaxations and energy calculations.

Next, we take note of 4 crucial properties as metrices to predict how they would

perform when stored with a ‘‘full-house’’ of Li cations.

The first and probably the most important descriptor is the binding energy (BESL),

which is a direct indicator of average binding energy (BEmax) with the maximum

amount of Li adsorbed. With more Li-ion stored, the electrostatic repulsion between

the ions becomes effective, and the value of binding energy keeps increasing.28 How-

ever, there are exceptions where BEmax can become even less than BESL with severe

structural changes in some unusual cases.28,50 As per the definition, more negative

binding energy indicates tighter Li binding, while a positive value indicates the possi-

bility of Li clustering and phase separation with the substrate. However, too negative

BESL can be a problem as this indicates electron deficiency and thus instability of the

material in the pristine and freestanding form. This also points to extremely tight Li

binding that could lead to bond cleavage in the material or an amorphous phase

with a higher amount of Li stored. Also, as discussed before, the absolute value of

the BEmax quantifies the average OCV, and for materials viewed as a prospective

anode, which is the case most of the time, this should be as small as possible in magni-

tude. The ideal BESL should therefore be a moderately negative quantity.

Our second and third descriptors tell us about the mechanical sturdiness of the ma-

terial after a single Li-ion is adsorbed at the most stable site. These are the rms

displacement (disprms-SL) of all the atoms of the substrate per area (before Li adsorp-

tion) and the percentage of area change (DASL) after Li adsorption. Clearly, the lower

the absolute value of disprms-SL or DASL, the greater chance the material would have

of retaining its structural integrity with a ‘‘full-house’’ of Li-ions stored. Also, a dras-

tically high magnitude of either of these two descriptors indicates a possibility of

phase change upon lithiation, which is somewhat common with 2D materials but

mostly undesired in LIB applications.26,28,47

The fourth descriptor, the simplest one, is the amount of charge transfer (q) from the

adsorbed Li to the substrate. Ideally, this should be �1e. However, with different

kinds of complex interactions, this value can range from mildly positive to even

less than �1e. This value has to be as negative as possible to have a high specific ca-

pacity. However, high negative values can also indicate a strong reaction between

the Li and the substrate, which is undesirable.

Using 2H-MoS2 as a prototype, we have described the procedure of identifying the

most stable SL binding site and the number of unique binding sites in Figure 2A. In

Figure 2B, we illustrate the concept of disprms-SL by superimposing the structures of

the pristine material, and the material with a Li adsorbed at the ‘‘Top Mo’’ site, which

is highlighted with a red dotted circle.

Initial screening for LIB electrode materials

The important intrinsic properties for a material to be considered as LIB electrodes

are low or preferably zero bandgaps for high charge conductivity and high specific
Cell Reports Physical Science 3, 100718, January 19, 2022 5



Figure 2. Identifying binding sites and defining atomic displacement

(A) The algorithm finds four unique adsorption sites: the top of the S atom, the bridge between Mo and S atoms, the top of the Mo atom, and the hollow

space at the center of the Mo-S hexagon. After lattice optimizations, the Li placed at the bridge site moves to the top of the nearest Mo, indicating theirs

is no stable bridge site in MoS2. A symmetry-based analysis is then performed on all four relaxed structures, where the equivalence between relaxed

Bridge and Top Mo sites are established, reducing the number of unique adsorption sites to 3. The most stable site turns out to be the Top Mo site with

BESL = �0.5 eV, disprms-SL = 0.59/Å, DASL = 1.87%, and q = �0.85 e.

(B) Assuming the most stable adsorption site as a reference, the displacement after Li adsorption of the Mo atom at the bottom right is quantified by the

distance between the two parallel red lines. The displacement of all atoms can be calculated similarly, the root mean square of which is then taken and

normalized by the cell area before adsorption to obtain the quantity disprms-SL. The purple, yellow, and green balls represent Mo, S, and Li atoms,

respectively.
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area (Aspecific), i.e., high effective surface area of the material per unit of mass. In

addition, the materials should be dynamically and thermodynamically stable for

their experimental realization. In the current version of C2DB, there are 423 mate-

rials exhibiting zero Perdew-Burke-Ernzenhof (PBE) bandgap and high dynamic

and thermodynamic stabilities. This number is probably too small to train a reliable

ML model. However, there are real materials that pose apparent exceptions to the

above-stated screening criteria. For instance, silicene is classified as a material with

low thermodynamic stability in C2DB, but silicene transistors have been
6 Cell Reports Physical Science 3, 100718, January 19, 2022
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demonstrated to work at room temperature.51 Many commonly used 2D materials,

such as T-phase MoS2 showing dynamic instability52 in freestanding form, stabilize

themselves on substrates through possible substrate interaction and even find

application in room-temperature devices.53 Also, these materials can show CDW

characteristics and stabilize in a larger supercell with slight structural distortion.40

On the other hand, despite showing a sizable bandgap, ReS2 has been experimen-

tally demonstrated to be a high-current-density decent LIB anode material.54

Hence, we also include around 1,500 more randomly selected materials in our da-

taset that show PBE bandgap up to 1 eV and are classified to have low, medium, or

high thermodynamic and dynamic stabilities. Considering the cost of the DFT cal-

culations, this number is deemed large enough to reliably train deep-learning-

based ML models. We exclude all the janus materials as our methodology is not

equipped to handle the inhomogeneous surface terminations.

Data analysis and ML for single Li-ion adsorption

After performing all the DFT-based relaxations and energy calculations, we end up

with a total of 1,941 data points (Data S1). The data are summarized in Figure 3,

where the above-mentioned four SL-ion descriptors are plotted against the most

important intrinsic property of the material, the specific area. The histogram distri-

bution of these quantities is shown in Figure S1. Note that to have an excellent spe-

cific capacity, a material should have values in the desired range for all four descrip-

tors, while maintaining a decently high value of Aspecific > 750 m2/g. Analysis of the

data with random structure searching/delithiation (narrated in detail in the following

section), andmanual visualization for some selected structures reveal that the ‘‘sweet

spot’’ for BESL is in the range �0.4 to �2.0 eV. As discussed before, the values of

disprms-SL and DASL for a good Li-storing material should be nearly zero, and we

find the desired absolute values here to be lower than 1/Å and 1%, respectively.

The value of qSL can be as negative as �1.6 e for some materials, but the structural

integrity of these materials is questionable even with a single Li adsorbed. Most ma-

terials show q close to �0.8 e, indicating transfer of almost one electron to the sub-

strate and formation of Li+ ions, just as intended for LIB systems. We define this

range as �0.55 e to �1 e. We shortlist a total of 10 materials, which has all four

descriptor values in the desired range with a decent Aspecific. These points are high-

lighted in Figure 3. Among these, silicene (Si2_A-164-d) shows the highest Aspecific =

2,777 m2/g, but has already been well established as an excellent Li storage material

in our previous structure-searching-based study.47 The second material with Aspe-

cific = 2,569 m2/g is boron phosphide (BP_AB-187-df), which has also been estab-

lished as an excellent LIB anode material by a previous study.50 There are four ma-

terials with Aspecific values 832–1,114 m2/g that belong to the 2-layer bare MXene

category with the formula M2X, where M = Sc/Ti and X = C/N. Again, numerous con-

ventional ‘‘uniform-adsorption’’ first-principles-based studies have established

these materials as excellent LIB anodes.55–59 However, none of these studies have

implemented the gold standard of global minima searching to examine the mate-

rials’ suitability as electrodes, and neither have checked the materials for reactivity

with the electrolytes. We proceed with some of these for further stringent

evaluations.

Because of an ever-increasing amount of available data, ML has recently foundmany

applications in the field of solid-state materials science.60–62 Among many models,

graph-based neural networks have received special attention since they do not

require complex transformations to generate feature vectors and can accurately pre-

dict diverse physical properties directly from the crystal structures with a moderate

amount of data.63–66 After rigorous testing (see Experimental procedures), we select
Cell Reports Physical Science 3, 100718, January 19, 2022 7



Figure 3. Data analysis and machine learning (ML) of the C2DB data for LIB applications

(A–D) The four descriptors, namely (A) BESL, (B) disprms-SL, (C) DASL, and (D) qSL, are plotted with respect to Aspecific. The desired range of values for high

specific capacity is highlighted along with the ten shortlisted points satisfying all criteria.

(E and F) ML predicted values of (E) BESL and (F) disprms-SL are plotted against their DFT predicted counterparts.
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theMatErials Graph Network (MEGNet)64 as the ideal framework to predict the FOM

descriptor values. We train the network with a random 80% fraction of the dataset

and varying parameters to predict the two most essential descriptors: BESL and

disprms-SL. Figures 3C and 3D illustrate the prediction accuracy on the 20%

unseen test data. For BESL, the mean absolute error (MAE) is 1.31 eV and the coef-

ficient of determination (R2) is 0.46, while in the case of disprms-SL, these values are

0.35/Å and 0.82. Considering the range and the skewness of the data, these accu-

racies are indeed encouraging to tout deep learning (DL) as a rapid screening

tool. Of course, the accuracy can be further enhanced by training with a larger data-

set. However, the number of similar samples in the C2DB and the relatively smaller

size of the dataset prompted us to investigate the predictive power of MEGNet

further.

Cross-validation (CV) techniques have been a popular tool for these kinds of explo-

rations.67 With the same hyperparameters, we use MEGNet on the same dataset but

randomly shuffled to perform a 5-fold leave-one-out CV. The MAEs obtained for the

cases of BESL and disprms-SL are (1.37, 1.43, 1.39, 1.31, 1.38) eV and (1.18, 1.08, 1.05,

0.89, 1.17)/Å. The average MAE for BESL (1.37 eV) from CV closely matches the per-

formance of the previous model, indicating similar performance in randomly shuffled

CV. However, the performance in the case of disprms-SL (mean CV score 1.07/Å) is

slightly worse than that of the previous model. Recently, a different technique

named forward cross-validation (FCV) has been proposed to judge a model’s perfor-

mance more rigorously, especially for materials science datasets where a FOM is be-

ing predicted.67 Here, the data are first sorted based on the property being pre-

dicted, and then, starting from a single fold of training and validation set, the

training set size is increased a fold per iteration. The validation set size is kept the

same, but the set number is shifted 1-fold per iteration. Again, we apply MEGNet

for this test, with the same hyperparameters to the same dataset, but sorted in the

ascending order of properties BESL and disprms-SL. The obtained MAEs are (2.57,

2.15, 1.82, 2.23) eV and (0.27, 0.65, 1.5, 3.5)/Å for BESL and disprms-SL, respectively.

Again, considering the ascending order of the data and the smaller size of the

training sets for most iterations, these values seem decent. However, the unsatu-

rated nature of the FCV score with respect to the iteration number indicates that

more data are required to train the models to increase their explorative prowess

in the high-value regions.

Random structure searching for multi-Li adsorption

We use ab initio random structure searching (AIRSS)26,28,47,68 to find the most stable

(global minima) Li-adsorbed phase of some shortlisted materials. If the Li-adsorbed

material has formula LixAyDz, where the pristine material is AyDz, we choose

0.67(y+z) % x % 2.0(y+z), which is a reasonable concentration range for high-spe-

cific-area materials to show high specific capacity.

Figure 4 shows the side view of AIRSS-found Li adsorbed most stable phases of 9

high-specific-area materials. The average Li binding energies (BEmax) for these

most stable lithiated phases are tabulated in Table S1. Too large an absolute value

of any descriptors results in highly deformed amorphous-like structures that clearly

won’t return close to the initial structure upon delithiation. The material P2Si6 ex-

hibits large absolute values for BESL and DASL and becomes extremely deformed

upon lithiation even with a relatively moderate concentration of Li. However, the ma-

terial BP displays moderate values of all four descriptors and accommodates all Li-

ions without any significant distortion. The structure becomes puckered from the

flat freestanding form upon a full-house lithiation, but this has also been found
Cell Reports Physical Science 3, 100718, January 19, 2022 9



Figure 4. AIRSS-found most stable lithiated structures

The side views of the Li-adsorbed structures are shown, where the green balls above and below the materials represent the Li-ions. The light purple,

dark blue, dark green, pink, dark purple, orange, brown, yellow, light blue, light green, sky blue, and red balls represent P, Si, B, H, Sc/Mo, As, C, S, N, Cl,

Ti, and V atoms, respectively.
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with uniform adsorption.50 Note that our AIRSS-found most stable structure is

different from this uniformly adsorbed structure where all Li ions have been placed

on the hollow sites. Here, the top Li layer is adsorbed on the hollow spot, and the

bottom layer is adsorbed on top of the B atom. The material BAs, where the P spe-

cies is replaced with equivalent As species, also show similar behavior, both in terms

of SL and full-house adsorption. The material ScH2 delivers moderate binding en-

ergy, but the absolute values of disprms-SL and DASL are slightly higher than 1/Å

and 1%. The material becomes irreversibly damaged upon a full-house lithiation.

The 2-layer bare MXenes with formula M2X (M = Sc/Ti and X = C/N) also satisfy

our initial screening criteria of Aspecific with the descriptor values falling into the

desired range as well. Considering the high computational cost, we only test the

lighter ones, namely Sc2C and Sc2N, using AIRSS. The most stable lithiated phases
10 Cell Reports Physical Science 3, 100718, January 19, 2022
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accommodate a full-house of Li-ions with almost no structural distortion. Again, it

should be noted that the AIRSS-found structures are different from conventional uni-

formly adsorbed structures.55–59 The top Li layer here is adsorbed on top of the X

atoms, whereas the ions in the bottom layer get adsorbed on top of the M atoms.

These cases highlight the advantage of using AIRSS to find the most stable phase

over intuition-driven manual Li placement. The material MoS2 (AB2-115-dg) exhibits

all descriptor values in the desired range. Yet, it becomes almost amorphous upon a

full-house Li adsorption, possibly because the material is thermodynamically not

very stable, and the most stable (at the global minima) phase of MoS2 is the 2H

phase. Nevertheless, this case shows that the SL descriptors could fail to predict

what happens at full-capacity Li adsorption for a few materials. The material Ti4S4Cl4
is an alloy originating from the H-phased TiS2, where 50% S atoms of both sides have

been replaced with Cl atoms. This material also falls in our desired range in terms of

descriptors. Interestingly, the AIRSS-found structure does look somewhat close to a

uniformly adsorbed structure, but it seems the material turns into an H’ phase with

metal atoms forming periodic clusters. The Cl atoms at the intra-cluster space

seem to be popping out of the plane, but the base of the structure appears

primarily unharmed. We perform a ‘‘quick delithiation’’28 test on this structure and

find that the material returns precisely to its starting phase after the delithiation (Fig-

ure S2), indicating the changes with lithiation are entirely reversible. The material

V2S2 undergoes severe structural deformations upon lithiation, and layered adsorp-

tion of Li-ions in the most stable structure can be observed. However, after quick de-

lithiation, the structure seems to be returning close to its original form (Figure S2).

These two materials can be categorized as ‘‘borderline cases,’’ where despite

showing severe structural changes with a high concentration of Li adsorption, the

materials return to their pristine form upon delithiation. This highlights the predic-

tive power of the defined SL descriptors, which can indeed work for non-trivial

borderline cases.

Electrolyte test and passivation strategy for Li-ion storage

After the random-structure-searching-based reversibility test, we examine the

top-performing materials’ reactivity with commercially available LIB electrolytes,

ethylene carbonate (EC) and dimethyl carbonate (DMC). Silicene visually does not

show any signs of reacting with the EC molecule (Figure S3), and the binding energy

(�0.36 eV) is almost fully contributed (88.53%) by dispersion energy. The materials

BP and BAs also do not visually seem to be reacting with the electrolyte, but these do

show a mild deformation upon EC adsorption (Figure S3). Again, the binding energy

(�0.36 eV for BP and �0.37 eV for BAs) is entirely contributed (96.67% for BP and

98.54% for BAs) by dispersion energy, indicating these materials are inert to EC

and are ideal to be wetted by the electrolyte. The material Ti4Cl4S4 visually does

not show any deformation after the adsorption of EC, but V2S2 does (Figure S3).

However, in both the cases again, the binding energy (�0.44 eV for Ti4Cl4S4 and

�0.55 eV for V2S2) is mainly contributed (87.96% for Ti4Cl4S4 and 68.88% for V2S2)

by the dispersion energy; thus, almost no chemical reactivity and good wetting is

expected.

Despite surviving the AIRSS test with flying colors, the MXene group, M2X, intuitively

seems reactive and prone to oxidation as these have bare metal surface terminations.

In fact, functionalization with various functional groups is an extremely popular strat-

egy for MXenes to reduce the reactivity of the surface as well as tune the proper-

ties.69,70 As expected, all four shortlisted M2X materials react violently with both the

EC and DMC, which visually results in the disintegration of the molecules (Figure 5;

Figure S4). Also, the contribution of dispersion energy to the highly negative binding
Cell Reports Physical Science 3, 100718, January 19, 2022 11



Figure 5. Electrolyte reactivity, hydrogen passivation, and Li storage of Sc2C

The color convention of Figure 4 has been repeated, except the red balls represent the oxygen atoms here. The dotted lines signify hydrogen bonds.
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energy is minimal (Table S2). Clearly, functionalization is required to suppress the reac-

tivity of the metal surfaces. Surface passivation by hydrogen is a popular and relatively

easy technique that has recently been successfully used to passivate and stabilize bor-

ophene in ambient conditions.71 Moreover, among all functional groups, H-function-

alization adds minimum molar weight to the material, which in turn helps to preserve

the specific capacity. Taking the lightest material, Sc2C, as an example, we
12 Cell Reports Physical Science 3, 100718, January 19, 2022



Table 1. Specific capacity and specific capacitance of some noteworthy materials

Material Specific capacity (mAh/g) Specific capacitance (F/g)

C2_A-191-d (graphene) 0 122.38

MoS2_AB2-187-bi (2H-MoS2) 272.08 42.54

Si2_A-164-d (silicene) 954.11 296.28

Honeycomb borophene* 2,479.28 537.39

Beta-aluminene* 993.36 220.87

BP_AB-187-df 1,282.96 152.66

AsB_AB-187-df 625.24 88.38

Sc2C_AB2-164-bd* 525.92 144.29

Sc2CH2 515.70 104.91

Sc2N_AB2-164-bd* 515.8 143.67

Sc2NH2 506.01 119.69

Ti4Cl4S4_ABC-7-a 464.54 91.54

V2S2_AB-164-d 645.77 91.06

Ti2BH2 493.75 111.57

The materials marked with asterisk exhibit highly reactive surfaces.
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functionalize it with hydrogen and test the adsorption behavior for both EC and DMC.

The binding energy, contributed mainly by dispersion, becomes significantly less

negative (Table S2). Visually, the structures also seem almost unperturbed (Figure 5;

Figure S4), except for the formation of weak hydrogen bonds between the oxygen

of the EC molecule and hydrogen of the surface. In absence of chemical reactivity,

this would aid in better wetting. Next, we test Sc2CH2 through AIRSS again, with the

same amount of Li content as before. The most stable structure shows moderate

distortion in the surface consisting of hydrogen, but the base of the material remains

intact. It is worth noting that this structure is only negligibly (0.004 eV/atom) more sta-

ble than the uniformly adsorbed structure. The original material is fully recovered after

quick delithiation (Figure S2). The specific capacity decreases negligibly compared

with its bare counterpart as mentioned in Table 1. Therefore, for reactive materials,

hydrogen passivation seems to be the best way to suppress the reactivity while keep-

ing the specific capacity almost intact.

ML-driven discovery of LIB electrode materials

Based on theML-based screenings, we prepare another small set of data with 22ma-

terials (Data S2), where eight materials are shortlisted from the Jarvis-2D data-

base.31,32 In addition, we also include all the synthesized phases of borophene,47

M2Y MBenes (M = Sc/Ti/V and Y = B),55 hydrogen-functionalized M2XH2 and

M2YH2 (M = Sc/Ti/V, X = C/N Y = B), 2H-MoS2, and highly asymmetric 1T’-ReS2.
28

After performing our high-throughput SL calculations, only eight materials, namely

b12, striped and c3 borophene, Ti2B, Ti2CH2, Sc2CH2, Ti2BH2, and Sc2NH2, exhibit

SL descriptor values in the desired range. Sc2B and Sc2BH2 show high DASL. Indeed,

the AIRSS-found most stable lithiated structure of Sc2BH2 (Figure S5) is an almost

amorphous structure where the B atoms form clusters by coming together, indi-

cating weak Sc–B bonds. Remarkably, both Ti2B and Ti2BH2 exhibit all descriptor

values in the ‘‘sweet spot.’’ The AIRSS-found most stable structure is also the uni-

formly adsorbed structure (Figure S5), indicating Ti2BH2 could be an excellent mate-

rial for LIB anode application. It is worth mentioning that both the SL binding energy

and charge transfer is somewhat poor in Ti2BH2, but these quantities improve dras-

tically through a subtle structural change with a ‘‘full-house’’ of Li adsorbed. The b12,

striped, and c3 borophenes have already been established as excellent LIB anode

materials by global-minima-search-based previous study.47 These results reaffirm

our choice of range for the descriptor values. The only exception in this set is the
Cell Reports Physical Science 3, 100718, January 19, 2022 13
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honeycomb borophene, which shows extremely out-of-range values for the first 3

descriptors, yet is touted to have extremely high specific capacity.72 However, it

should be noted that the pristine honeycomb phase is the most unstable borophene

by quite a distance47, and it exists in an electron-deficient form naturally and stabi-

lizes only on Al[111] by adsorbing electrons from the surface.10,73 Closer inspection

reveals that the honeycomb borophene transitions into amixture of b12 and c3 phase

upon SL adsorption, characterized by the material’s extremely negative BESL and

extremely high single-Li adsorption-induced structural changes. As expected,

adsorption of EC molecule also induces phase change in the material, revealing

charge transfer and chemical reactivity (Figure S6; Table S2).

Modeling of electrode-electrolyte systems for supercapacitors

We begin the supercapacitor part of this work with a brief overview of the essential

physical and computational parameters chosen for the selected computational

framework. Only materials with a PBE bandgap of less than 2 eV have been selected

since the wider bandgap materials would have extremely low electronic conductivity

and thus would be unsuitable for electrode applications. For instance, monolayer

MoS2 shows an experimental bandgap close to 2 eV,74 and MoS2 nanowalls-based

supercapacitors have been reported to show a specific capacitance (Cspecific) of

around 100 F/g,75 slightly less than that of graphene.24,25 We use the solvation

model SaLSA (Spherically Averaged Liquid Susceptibility Ansatz) for all calculations

that simulate a 6 M aqueous electrolyte. SaLSA is a fully non-empirical solvation

model that captures the atomic-scale nonlocality of the fluid response at a linear-

response level.15 All the essential parameters and models have been chosen after

rigorous benchmarking tests. More computational details and the results of the

benchmarking tests are described in the Experimental procedures and Supple-

mental information sections.

A total of 3,691 materials from C2DB possessing a bandgap less than 2 eV have un-

dergone our fully automated computational framework (Data S3) detailed in Fig-

ure 1. The lattices and ionic positions of the materials are first optimized in a vacuum

and then a neutral or zero potential calculation with the material immersed in the im-

plicit non-adsorbing electrolyte is performed to find out the potential of zero charge

(PZC). After that, fixed-potential grand canonical JDFT calculations are performed

where the potential of the material is varied in the range V ˛ [�0.6 V, 0.6 V] around

the PZC. With the fixed potential simulating the applied voltage in a capacitor plate,

the surface charge density on the electrode (Q) is calculated from self-consistent

JDFT that simulates the electric double-layer (EDL) formation at the interface of

the solid and the electrolyte. Usually, the integral capacitance is defined as CI =

Q/(V-PZC). However, due to some observed discontinuities of the V-Q curve for a

few materials, in this work, we take the quantity average integral capacitance (C)

as the fundamental capacitance of a material, which is obtained by calculating the

slope of the best linear fit to the V-Q curve. Such a fitting technique also equips

us with the squared sum of the errors, termed as the residual error (Eresidual), as a

measure to estimate the amount of nonlinearity or discontinuity in the curve. Such

nonlinearity or discontinuity of the V-Q characteristic is an undesired consequence

of charge asymmetry correction in the semi-empirical charge-asymmetric nonlocally

determined local-electric (CANDLE) model and might yield unphysical results.20,21

In fact, we first attempted to use CANDLE for our work, and after assessing almost

70% of the materials, we did observe a large discontinuity in the V-Q curve for a sig-

nificant number of materials. The non-empirical but computationally expensive

SaLSA model reduces this number significantly. Graphical processing units (GPUs)

are used to manage this additional computation load for our high-throughput study.
14 Cell Reports Physical Science 3, 100718, January 19, 2022



ll
OPEN ACCESSArticle
It is worth mentioning that when the capacitive response is nearly linear, SaLSA and

CANDLE yield almost identical results (Figure S7; Table S3). However, when the

curve shows nonlinear nature with CANDLE, the value C becomes highly overesti-

mated compared with SaLSA (Figure S8; Table S4).

Data analysis of electrode-electrolyte systems

All calculations of 3,691 materials from C2DB have finished gracefully with our auto-

mated high-throughput computational framework, and their capacitive properties

are determined. Figure S9 and Table S5 show a statistical description of four impor-

tant quantities from these data: specific area, PZC, specific capacitance, and residual

error. The PZC is a vital quantity that determines the electrochemical voltage window

of charging for a particular electrode-electrolyte interface. However, as discussed in

the Supplemental information (Figures S10 and S11) and Experimental procedures,

the PZC calculation of our high-throughput methodology may not be very reliable

for strongly correlated materials. The other quantities, however, can be calculated

with high reliability. Both the mean and median values of the PZC turned out to be

�0.14 V versus the standard hydrogen electrode (SHE), somewhat close to that of

graphene (�0.68 V versus SHE). Also, the PZC data are skewed toward the negative

tail. This implies most materials of the database can operate in the voltage windows

of commonly used electrolytes such as aqueous KOH as these have been successfully

used with graphene electrodes.23–25 We also demonstrate in the Supplemental infor-

mation that the specific capacitance of a material is almost independent of the sol-

vent or the electrolyte used. Non-aqueous organic electrolytes can provide a much

larger voltage window of operation. Therefore, the PZC value determined in this

work might not be an ideal parameter for screening suitable electrode materials

for supercapacitors. However, the specific capacitance is much more universal and

might be the perfect parameter to judge a material’s supercapacitive performance.

The mean and median value of Cspecific is 71.97 and 51.54 F/g, respectively, and

the data are skewed toward the positive axis (Figure S9; Table S5). The poor mean

and median values indicate that most 2D materials in the database exhibit low

Cspecific.

As expected, we observe a strong linear relation between specific area (Aspecific) and

Cspecific (Figure 6A). A large Aspecific often results in a decent Cspecific, although there

are exceptions where the average integral capacitance plays the dominating role.

The Eresidual versus Cspecific plot (Figure 6B) reveals that most of these materials

exhibit linear capacitive responses. However, 4.63% of materials show Eresidual >

10 mC2/cm4, while 3.71% show Eresidual > 100 mC2/cm4, elucidating highly nonlinear

or even a discontinuous V-Q relationship. Such nonlinearity has been observed

experimentally with Ag[100] surface near the PZC,76, but there is a lack of continuum

solvent model to represent this behavior accurately.21 Thematerial FeH2O2_AB2C2-

12-ci exhibits Cspecific = 1,014.24 F/g and Eresidual = 1,331.45 mC2/cm4, and accord-

ing to C2DB shows high dynamic and medium thermodynamic stability. For this

material, using various available solvation models, we show that none of them can

rectify the discontinuous nature of the response, but SaLSA and LinearPCM-

GLSSA13 produce the least Eresidual (Figure S12; Table S6). However, for a similar

material, H2O2Sb_AB2C2-12-ci, SaLSA produces near-zero Eresidual, whereas

CANDLE produces Eresidual = 5,517 mC2/cm4 (Figure S8; Table S4). These examples

show that SaLSA can consistently outperform the other models, possibly because of

its non-empirical nature. However, we are unable to comment on the origin or the

physical feasibility of such discontinuity of the V-Q curve, and further probing and

refinement of models are required.21 Figure 6C shows how the PZC is distributed

with respect to the Cspecific. A small cluster can be observed on the bottom right
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Figure 6. Graphical representation of various important quantities obtained from probing the capacitive responses of materials from C2DB

(A–D) Plots of (A) specific area versus specific capacitance, (B) specific capacitance versus residual error, (C) specific capacitance versus PZC, and (D) (J)

DFT-predicted specific capacitance versus ML-predicted specific capacitance for a test set not seen by the model.
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of Figure 6C, indicating high Cspecific and highly negative PZC. These are mostly the

strongly correlated materials, where the PZC calculation can be erroneous.

ML and discovery of supercapacitor electrode materials

We further use MEGNet to develop a model to predict the average integral capac-

itance, the intrinsic chemical property of a material. It can then be scaled by Aspecific,

directly obtainable from the crystal structure, to acquire a prediction of Cspecific. The

C2DB data are partitioned into a random 0.8:0.2 train-test split to train and test the

models with varying parameters. The best model displays an impressive MAE of

2.07 mF/cm2 and an R2 of 0.7, with 739 (20%) unseen test data points. It translates

to an MAE of 18.1 F/g in terms of Cspecific. The model’s performance on the test

data is shown in Figure 6D. As defined in the section for SL-ion properties, here

we also perform 5-fold CV and FCV tests on the dataset, randomly shuffled for the

former and sorted in ascending order of C for the latter, to rigorously examine the

explorative power of MEGNet. The obtained MAEs are (1.95, 2.15, 2.34, 2.08,
16 Cell Reports Physical Science 3, 100718, January 19, 2022



Figure 7. Performance of the ML model and discovery of new materials from other databases using ML

(A) The plot of (J)DFT-predicted specific capacitance versus ML-predicted specific capacitance for 327 materials shortlisted from 4 different databases.

(B) The ML model’s prowess demonstrated on borophene polymorphs.
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2.17) mF/cm2 for 5-fold CV (mean CV test score = 2.14 mF/cm2) and (1.77, 1.34, 1.51,

14.24) mF/cm2 for 5-fold FCV. Again, these scores seem decent and on-par in terms

of performance with the previous model. The extremely high value of MAE

(14.24 mF/cm2) for the last fold of FCV could be due to two reasons. First, the large

range and ascending order of data are partially responsible. Second, as described

before, the high values of C and Cspecific mostly come from highly nonlinear or

even a discontinuous V-Q relationship, the physical feasibility of which is doubtable

and could simply originate from the limitations of the SaLSA model.

Using this model as a quick screening tool, we thoroughly search four other 2D-ma-

terials databases, namely, Materials Cloud-2D,29 aNANt,30 Jarvis-2D,31,32 and

2DMatPedia,33 to discover materials with high Cspecific. To diversify the data for

future training, about 20% of materials were shortlisted with low-to-moderate

Cspecific, whereas the rest are predicted to have a large (>500 F/g) Cspecific. After

another set of JDFT calculations on this new dataset, we end up with a total of

327 new materials, excluding the overlapping data and failed calculations. The

model produces MAE = 29.93 mF/cm2 and R2 = �1.72 for this dataset. The perfor-

mance in terms of Cspecific is illustrated in Figure 7A, and the MAE in terms of the

same is 266.93 F/g. The model performs well on Materials Cloud-2D, Jarvis-2D,

and part of the aNANt dataset. However, it performs poorly on the data from

2DMatPedia and a large part of aNANt. We have observed this kind of behavior in

a previous work,37 as most structures of 2DMatPedia can be drastically different

from other databases. When the data from 2DMatPedia and aNANt are excluded
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Figure 8. Monoelemental 2D materials as supercapacitor electrodes

(A) Capacitive performances of promising and unexplored monoelemental 2D materials. The V-Q curves of Al-alpha and Mg_2 dm-5954 have been

referenced with the right-sided y axis to cover their larger range.

(B) Structure of monoelemental 2D materials with an adsorbed water molecule. The gray, green, orange, and blue balls represent Al, Be, Mg, and Si

atoms, respectively.
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from the test dataset, theMAE improves considerably to 8.5 mF/cm2 and 29.78 F/g in

terms of C and Cspecific, respectively. The improved R2 score, however, still remains

negative with a value of �0.8. Although the model’s overall performance seems to

be poor here, it performs exceptionally well in some important cases. One such

case is highlighted in Figure 7B. The present version of C2DB contains only a single

phase of borophene, the unstable A-65-i polymorph, which was part of the training

data. Upon testing the model on experimentally synthesized borophene

phases,73,77,78 we got an MAE of 10.23 F/g and excellent individual accuracy in
18 Cell Reports Physical Science 3, 100718, January 19, 2022
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terms of Cspecific, which is illustrated in Figure 7B. It can be observed that the A-65-i

borophene is structurally very dissimilar from the experimental synthesized phases.

Also, there is a moderate amount of structural variation among the synthesized allo-

tropes. Yet, theMLmodel’s learning capability to produce such accurate predictions

is indeed remarkable.
Supercapacitance of monoelemental 2D materials

Monoelemental 2D materials, such as borophene, silicene, and aluminene, have

recently been predicted to show ultra-high Li-ion storage capacity for LIB applica-

tions.47 The light molar weight and high charge conductivity of these materials

also make them suitable candidates for supercapacitive applications. Figure 8A

shows the capacitive performances of a host of unexplored light monoelemental

2D materials exhibiting a better integral and specific capacitance than graphene.

These are as follows: 2D magnesium (Mg_2 dm-5954, 1828.51 F/g), all four pre-

dicted phases of aluminene (220.87–1,712.6 F/g), two 2D allotropes of beryllium

(Be_2 dm-5980 and Be4_A-57-d, 940.2 and 393.46 F/g), silicene (Si2_A-164-d,

296.29 F/g), stanene (Sn2_A-164-d, 134.15 F/g), germanene (Ge2_A-164-d, 128.83

F/g), and antimonene (Sb_JVASP-13539, 122.57 F/g). All of these are predicted to

have either metallic nature or a very low bandgap (0.02–0.06 eV), elucidating ideal

conductivity for supercapacitor electrodes. However, it should be noted that

Mg_2 dm-5954 shows slightly discontinuous V-Q characteristics in our calculations.

The metal atom terminations for most monoelemental materials hint that they could

be highly reactive even in aqueous electrolytes and prone to oxidation. To test the

reactivity of the top-performing four monoelemental 2D materials, we place a water

molecule in proximity to them and perform atomic relaxations. The relaxed struc-

tures are shown in Figure 8B. Expectedly, the first three materials, namely beta-alu-

minene, monolayer beryllium, and monolayer magnesium, react vigorously with ox-

ygen from the water molecule, showing definitive structural changes in the material

and chemical bond formation between the metal ions and oxygen with very low

dispersion energy contributing to the strong binding (Table S2). This indicates

that our implicit electrolyte model may not be valid for these materials. Silicene how-

ever does not chemically react with water at all, but interacts through weak van der

Walls force, implying the used implicit electrolyte model is valid in this case, and sil-

icene indeed is a potential material with excellent supercapacitive performance.
DISCUSSION

Combining the ‘‘explicit-ion’’ and ‘‘implicit-solvent’’ formalisms, we discover certain

materials (Table 1) that show desirable specific capacity for LIB applications and spe-

cific capacitance for supercapacitive applications. The specific capacity of the mate-

rials has been determined from the AIRSS results, like previous works,28,47 and the

electrolyte test with EC and DMC has been performed later. On the other hand,

the supercapacitive properties are determined from an implicit electrolyte model

with parameters tuned for aqueous solvent. We show in Figure S13 and Table S7

that, usually, the exact type of solvent affects the specific capacitance minimally;

therefore, the determined specific capacitance values should be transferable to

other electrolytes as well.

The first two entries of Table 1, graphene and 2H-MoS2, are arguably the two most

studied 2D materials, and their FOMs are given for comparative analysis. The mate-

rials marked with an asterisk, namely honeycomb borophene, beta-aluminene, Sc2C,

and Sc2N, are proven to be highly reactive to common solvents. Other phases of
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borophene are not reactive toward common electrolytes (Figure S6; Table S2).79

Silicene has been demonstrated as an excellent material for both LIB (954.11

mAh/g) and supercapacitive (296.28 F/g) applications, owing to its high specific

area and inert-to-electrolyte surfaces. BP shows excellent specific capacity

(1,282.96 mAh/g) and decent specific capacitance (152.66 F/g), whereas

BAs, Ti4Cl4S4, and V2S2 show good specific capacity (625.24, 464.54, and 645.77

mAh/g, respectively) but moderate specific capacitance (88.38, 91.54, and

91.06 F/g, respectively). Hydrogen-passivated MXenes Sc2CH2 and Sc2NH2, and

MBene Ti2BH2 show good Li-storage (515.70, 506.01, and 493.75 mAh/g) and

specific capacitance (104.91, 119.69, and 111.57 F/g) close to that of graphene

(122.38 F/g). It is worth mentioning that experimentally, the specific capacitance

of graphene and MoS2 has been found to be up to 13524 and 100 F/g,75 which indi-

cates that our calculatedCspecific values may be underpredicted, and the real specific

capacitance of the materials mentioned above can be even higher.

Although the ML models perform encouragingly when the data are randomly split,

results from more extensive tests such as FCV suggest that the models are not per-

forming satisfactorily in terms of extrapolative prowess, and more data are required

to train the models to the desired accuracy. However, the ML component is not the

primary focus of this study. The ML tool’s main goal was to quickly scan through

various databases, searching for ‘‘promising’’ electrode materials for LIB and super-

capacitor applications, which has mostly been fulfilled.

In summary, we have predicted the performances of a few thousand 2D materials as

LIB and supercapacitor electrodes using fully automated explicit-ion-DFT-based

and implicit-electrolyte-JDFT-based calculations. For Li-ion storage, four descrip-

tors were defined based on the SL-binding properties, which are much easier to

obtain compared with the gold standard of global minima searching. A clear range

of values for these descriptors were empirically determined that helps in finding po-

tential materials with high specific capacity. An ML-based model is also trained on

these data that can bypass the SL DFT calculations and aid in rapid screening. For

supercapacitor applications, the specific capacitance was directly determined as

the implicit electrolyte model reduces the computational cost. An ML model was

also developed for faster determination of capacitance. Various 2D materials with

high specific capacity and capacitance have been identified, which may guide the

experimentalists to engineer exceptional LIB/supercapacitor/hybrid devices

capable of meeting society’s ever-growing demand for energy storage.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the lead contact, Santanu Mahapatra (santanu@iisc.ac.in).

Materials availability

The crystal structures of unique materials generated in this study are available from

the lead contact without restriction.

Data and code availability

The authors declare that the main data supporting the findings of this study are avail-

able within the paper and its supplemental files. The Li-ion and supercapacitor data-

sets are available with this paper in comma-separated values (CSV) format. The same

datasets in pickled dataframe format, along with the exported and zipped ML
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models, are available at https://doi.org/10.6084/m9.figshare.14406740. Other rele-

vant data are available from the lead contact upon reasonable request.

DFT calculation setup for explicit-ion system

DFT calculations are carried out using the generalized gradient approximation

(GGA) as implemented in the code Vienna Ab initio Simulation Package

(VASP)80–83 with the Projector-Augmented-Wave (PAW)84 method using the PBE85

exchange-correlation functional. The Materials Project recommended pseudopo-

tentials (https://docs.materialsproject.org/methodology/pseudopotentials/) have

been used throughout, except for Li, where the standard variant (without any suf-

fixes) has been used because of its lower cutoff energy requirement. Sufficiently

large cutoff energy of 520 eV is used to avoid any Pulay stress. For all structural re-

laxations, a > 30
a3

30
b31Gamma-centered k-points grid is used to sample the Brillouin

zone (BZ), where a and b are the lattice parameters of the particular supercell in Å. A

> 60
a3

60
b31 similar k-mesh is used for all static runs. Electronic convergence is set to

be attained when the difference in energy of successive electronic steps becomes

less than 10�6 eV, whereas the structural geometry is optimized until the maximum

Hellmann-Feynman force on every atom falls below 0.01 eV/Å. A large vacuum

space of R25 Å in the direction of c is applied to avoid any spurious interaction be-

tween periodically repeated layers. Semiempirical dispersion corrections with DFT-

D3 method as developed by Grimme et al.86 have been used in all the calculations.

All crystal structure visualizations have been done using the tool VESTA.87

AIRSS setup for multi-Li-ion adsorption

For the top-down random-structure searches, Li-ions are placed on top and bottom

of the adsorbent supercell randomly using the AIRSS initial configuration generation

engine. They are subsequently relaxed to their nearest local minima using DFT. The

AIRSS code developed by Pickard and Needs68 has been used for this purpose. The

(x, y) fractional coordinates of the Li-ions are allowed to be completely random.

The minimum separation between the atom pairs is kept between 1.2 and 1.6 Å to

minimize atomic overlaps depending on the atomic radii. The vertical distance

(along c) of the adsorbates from the surface is chosen randomly from the range of

2.2–3.8 Å, the usual range for typical Li-ion adsorption. More than 150 random struc-

tures that could be relaxed successfully are explored for each search. The AIRSS

lowest energy phase-finding algorithm and its highly parallel master-slave imple-

mentation are similar to our previous works.28,47 Both a and b lattice parameters

of the substrate supercells are kept more than 15 Å long, and a gamma-point-only

k-mesh is used to relax the structures while searching for the lowest energy phases.

However, the top five lowest-energy structures from every energy-rank list are pro-

cessed further with the above-mentioned stringent DFT setup.

JDFT calculation setup for electrode-electrolyte system

All (J)DFT calculations involving implicit electrolytes have been performed using

JDFTx.22 For the high-throughput computations for assessing the supercapacitive

properties, the following DFT settings are used.

For the lattice optimizations, both the ionic positions and in-plane lattice parameters

have been allowed to change. A total of 3 consecutive lattice optimizations are per-

formed to ensure proper convergence, and the force on every atomhas been confirmed

to go below 0.00019 Hartree/Bohr (0.01 eV/Å). For all calculations (lattice optimization,

neutral, and fixed-potential), the Perdew-Burke-Ernzerhof GGA (gga-PBE)85 exchange-

correlation has been used along with an electronic plane-wave cutoff energy of 30

Hartree, a charge density cutoff of 150 Hartree, and a Fermi function-based smearing
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at T = 0.01 Hartree. A Pulay algorithm (electronic-scf.) with an energy convergence cri-

terion of 10�8 Hartree (for more than two self-consistent field iterations) is used to find

the electronic ground state. For the lattice optimizations and single-point calculations, a
60
a3

60
b3 1 and a 100

a 3100
b 3 1 k-points grid is used to sample the first BZ, respectively,

where a and b are the in-plane lattice parameters in Bohr. The Schlipf-Gygi 2015

(SG15)88 norm-conserving pseudopotentials have been used for most calculations.

However, for some materials, especially materials containing Re, Hg, and Be, the

SG15 pseudopotentials fail. In these cases, the Garrity-Bennett-Rabe-Vanderbilt

(GBRV)89 ultrasoft pseudopotential has been used. Our benchmarking tests show that

both of these pseudopotentials produce nearly identical results (Figure S14; Table

S8), but the SG15 is preferred as it is slightly faster.

While choosing the proper solvationmodel amongmany available choices,15–17,90–92

it is imperative to balance accuracy and speed for a high-throughput study like ours.

The LinearPCM-CANDLE continuum solvationmodel is the latest and recommended

for most applications by the authors of JDFTx.16 On the other hand, the SaLSA solva-

tionmodel directly captures the nonlocal response of the liquid using an angular mo-

mentum expansion and determines the cavity from an overlap of solute and solvent

electron densities.15 According to the authors, this model is usually a factor of 10

more expensive than the continuum solvation models such as CANDLE or GLSSA13.

Basically, with a much faster speed, CANDLE mimics the response of SaLSA empiri-

cally. Formore details, please see the JDFTxwebsite (https://jdftx.org). CANDLE has

also been successfully used in a similar study on borophene supercapacitors.23 We

initially started our study with CANDLE, but after analyzing around 2,500 materials,

we observed that for a lot of cases, CANDLE is producing a somewhat unphysical

discontinuity in the V-Q curve that has also been reported for a tricky case before.21

Our benchmarking tests reveal that SaLSA produces a reasonable capacitive

response in most of these cases. As an example, we show the case of H2O2S-

b_AB2C2-12-ci (Figure S8; Table S4), where most of the LinearPCM and Nonlinear-

PCMmodels produce a nonlinear or even a discontinuous response, but SaLSA pro-

duces a perfectly linear V-Q curve with near-zero residual error. As a result, we

decided not to compromise with the accuracy of the obtained results and adopt

the costlier but fully non-empirical SaLSA model for all calculations.

H2O has been used as the choice of solvent, as aqueous-medium-based supercapa-

citor studies are the most common.11,12,23 However, our benchmarking tests (Fig-

ure S13; Table S7) reveal that the effect of solvent is minimal on the capacitive

response or the specific capacitance, but can affect the PZC significantly. This is ex-

pected as the organic solvents usually offer a higher electrochemical voltage window

than water. Therefore, the specific capacitances predicted in our study should be

transferable to other solvents, albeit the PZC would not.

Most materials have been virtually immersed in a 12 Å thick electrolyte layer for simu-

lating the capacitive response. For some unusually thick 2D materials, JDFTx fails

with this setting, and a slightly thicker layer of 14 Å had to be used.

The ionic strength of the electrolyte has been taken as 6M, following the previous stan-

dards.23 Our benchmarking tests (Figure S15) show that except for the very dilute limit

(0.01 M), the ionic strength barely affects the PZC or the capacitive response, again

making our specific capacitance and even the PZC predictions very universal.

Unlike LinearPCM and Nonlinear-PCM models, the choice of conducting ions in the

SaLSA model can affect the capacitive response.15 Conforming to the previous
22 Cell Reports Physical Science 3, 100718, January 19, 2022
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standards (http://jdftx.org/SolvationIon.html),23 we use the Na+ and F� ions to pre-

dict the non-absorbing capacitive responses of the materials. However, our bench-

marking tests (Figure S16; Table S9) show that the type of cation does not have any

effect on the PZC or the capacitive response, whereas the type of anion can slightly

affect the capacitive response but significantly alter the PZC.

We make an informed choice of using non-spin-polarized calculations throughout,

without any empirical Hubbard-U corrections. The non-spin-polarized calculations

are almost 1.5–2 times faster than the spin-polarized calculations. Also, determining

the magnetic ground state of materials can be a very involved process.37 Furthermore,

while some DFT codes do allow to determine the value of the parameter U using a

linear-response method (which is also a very extensive process),93 JDFTx lacks this

functionality. Using U values from the literature is also not possible as most of the

explored materials in this work have never been exposed to such studies, and these

values are also highly pseudopotential dependent and therefore not transferable.

To understand the effect of this choice on the capacitive properties, we choose

two famous 2D FM materials, CrI3 and Cr2Ge2Te6, as the ideal candidates

for benchmarking.94,95 The Materials Project (https://docs.materialsproject.org/

methodology/gga-plus-u) determines the effective U value of Cr as 3.7 eV, where

these effective U values have been calibrated by performing a fitting to experimental

binary formation enthalpies.96 Although this value is intended for a different DFT code

and is heavily pseudopotential dependent, it gives us an idea about the range of U

values we may try. We use U = [0, 1, 2, 3, 4, 5, 6, 7] eV for both materials as our bench-

marking test and document their capacitive properties as shown in Figures S10 and

S11. For both cases, the introduction of U makes the V-Q curve highly jagged and

slightly nonlinear. For Cr2Ge2Te6, U = 7.0 eV produces an unphysical all-positive

surface charge, even with negative applied voltage. Although the PZC changes

significantly with different U values, the change in the specific capacitance appears

minimal. The jagged nature of the curves also introduces huge residual error for the

linear fitting processes; therefore, a slight variation of the specific capacitance is ex-

pected anyway. However, the non-magnetic (NM) and the ferromagnetic (FM) solution

with U = 0 produce very close capacitive properties, including the PZC. These results

justify our choice of using non-spin-polarized calculations for this high-throughput

study.

All calculations have been performed using applied voltage V ˛ [�0.6, 0.6] V with an

interval of 0.2 V. However, for all focused benchmarking studies mentioned above,

this interval has been reduced to 0.1 V to get a smoother response and a better fit. As

a result, for the former case a 7-points fitting and for the latter a 13-points fitting is

performed to obtain the capacitance. Therefore, the specific capacitance (slightly)

and residual error (significantly) values may vary from the high-throughput calcula-

tions to the benchmarking tests.

Automated high-throughput computation methodology

For the high-throughput methodologies developed for this work, the Python library

pymatgen (Python Materials Genomics)97 has been used extensively. The library

Atomic Simulation Environment (ASE)98 has also been used for some operations.

Especially, the adsorption module49 from pymatgen is crucial to this work for finding

the possible Li-binding sites in an automated manner. Suitably modified versions of

MPRelaxSet and MPStaticSet from pymatgen.io.vasp.sets have been used to

perform the structural relaxations and the static runs. After these calculations finish,

the symm_reduce function from the adsorption module has been used to detect

equivalent adsorption sites, which takes a threshold value as an input. However,
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due to the Li-ion adsorption induced structural changes, it is next to impossible to

determine a ‘‘one-size-fits-all’’ threshold value that would be suitable for all the ad-

sorbed structures. Sometimes the structural changes are so severe that the function

completely fails to determine the symmetry. After rigorous testing, we define a

threshold of 0.175 for all materials. However, this value still fails to perform proper

symmetry reduction for some structures. With this threshold value, the algorithm

does correctly identify the correct number of unique adsorption sites for symmetric

MoS2 and asymmetric ReS2.

Nevertheless, this number is not an essential quantity for our analysis as we are

only interested in the most stable binding site, which is favored at full-capacity

adsorption.
ML

For the ML part, both Crystal Graph Convolutional Neural Networks (CGCNN)63

and MEGNet64,65 have been tested. We have added a total of 30 Å (15 Å on

each side) vacuum to all structures to ensure that the graph network does not

add spurious neighbors in the vertical direction from periodically adjacent cells.

To perform a fair comparison, the data were divided into random train and test

sets, with a ratio of 0.8:0.2. The best model was chosen based on the models’ per-

formance on the 20% test data. Parameters such as the maximum number of

neighbors and cutoff radius for building the crystal graphs are varied, and the per-

formance of the models is checked on the test set. The best MEGNet model out-

performs the best CGCNN model, and thus the MEGNet framework has been cho-

sen for further training. For the supercapacitance prediction, the models are

trained to predict the average integral capacitance, an intrinsic property of the ma-

terial. The specific area can be obtained from the crystal structure itself; subse-

quently, the specific capacitance can be estimated. While searching other data-

bases, the ML model sees unoptimized structures (optimized using other DFT

codes and parameters), and the integral capacitance, specific area, and ultimately

the specific capacitance are predicted based on this unoptimized lattice. We have

observed that the specific capacitance estimated with the unoptimized structure

and the optimized structure is very close for most materials except for a select

few, where the surface area changes significantly after lattice optimization by

JDFTx.
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