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RAMAN: A Re-configurable and Sparse tinyML
Accelerator for Inference on Edge
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Abstract—Deep Neural Network (DNN) based inference at
the edge is challenging as these compute, and data-intensive
algorithms need to be implemented at low cost and low power
while meeting the latency constraints of the target applications.
Sparsity, in both activations and weights inherent to DNNs, is
a key knob to leverage. In this paper, we present RAMAN, a
Re-configurable and spArse tinyML Accelerator for infereNce
on edge, architected to exploit the sparsity to reduce area
(storage), power as well as latency. RAMAN can be configured to
support a wide range of DNN topologies - consisting of different
convolution layer types and a range of layer parameters (feature-
map size and the number of channels). RAMAN can also be
configured to support accuracy vs. power/latency tradeoffs using
techniques deployed at compile-time and run-time. We present
the salient features of the architecture, provide implementation
results and compare the same with the state-of-the-art. RAMAN
employs novel dataflow inspired by Gustavson’s algorithm that
has optimal input activation (IA) and output activation (OA)
reuse to minimize memory access and the overall data movement
cost. The dataflow allows RAMAN to locally reduce the partial
sum (Psum) within a processing element array to eliminate the
Psum writeback traffic. Additionally, we suggest a method to
reduce peak activation memory by overlapping IA and OA on
the same memory space, which can reduce storage requirements
by up to 50%. RAMAN was implemented on a low-power and
resource-constrained Efinix Ti60 FPGA with 37.2K LUTs and
8.6K register utilization. RAMAN processes all layers of the
MobileNetV1 model at 98.47 GOp/s/W and the DS-CNN model at
79.68 GOp/s/W by leveraging both weight and activation sparsity.

Keywords—Convolutional neural networks (CNNs), deep learn-
ing, hardware acceleration, sparse processing.

I. INTRODUCTION

Deep neural networks (DNNs) have become ubiquitous in
various cognition and learning problems [1]–[4]. DNNs are
often computed in the cloud, and the inferred result is delivered
back to an edge node, introducing delay owing to constrained
communication bandwidth. Thus, the deployment of DNNs
directly on edge has recently attracted more attention since
it offers many inherent benefits, including privacy, bandwidth
savings, and latency reductions. However, the computation on
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an edge device poses numerous challenges due to power, mem-
ory, and resource constraints. GPUs and CPUs conventionally
used in cloud platforms are extremely power intensive and area
inefficient and thus cannot be directly deployed on edge. A
promising avenue to pursue in this respect is the development
of an accelerator tailored for neural computations on edge. A
customized hardware design for neural networks provides an
opportunity to optimize dataflow, memory access and exploit
network sparsity to overcome edge computing bottlenecks.

Sparsity is an inherent attribute in most DNNs which can
be leveraged on hardware. It is estimated that approximately
40% of the input activations (IAs) and 50% of weights (Ws)
are sparse in the MobileNet model [5], [6] trained on the
Imagenet dataset [1] with the hardware-aware pruning strategy
presented in this paper. Other well-established networks like
AlexNet [2], VGG-16 [7] , and ResNet-50 [8] show similar
sparsity statistics. Thus sparsity induces a lot of ineffectual
zero computations that can be skipped. Aggressive pruning
strategies can further reduce computations if a slight reduction
in inference accuracy is acceptable. In this direction, several
attempts have been made in the literature to maximize the
sparsity by zeroing out low-magnitude weights [9]–[12]. In
addition to weight sparsity, the commonly used rectified linear
unit (ReLU) activation function clamps all negative activation
values to zero, resulting in sparse output activations (OAs),
which become IAs to the subsequent layer. Even though
exploiting weight sparsity in hardware has been thoroughly
investigated, leveraging activation sparsity in hardware effi-
ciently is a topic of research and needs further exploration.
This disparity is primarily because of the fact that it is possible
to enforce structured sparsity in weights during training by
pruning in a hardware-aware fashion (by knowing the under-
lying hardware architecture and the dataflow) that maximizes
the overall hardware utilization and efficiency. However, the
activation sparsity is unstructured and highly challenging to
leverage on hardware as the data varies dynamically and
depends on the environment [13].

A. Related Work

Early work in this domain used the indirection principle
to exploit sparsity in one of the operands meaning in either
weights or activations, but not both. Cnvlutin [14] exploits
sparsity in IA by storing them in a compressed format as
value and index pairs. The index information of the non-
zero activations is used to perform in-direct memory access
to extract dense weights. In another work, Cambricon-X [15]
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uses the same indirection principle, assuming sparse synaptic
connections. The input neurons with non-zero synaptic con-
nections are transferred to a computational unit to perform
MAC (multiply-accumulate) operations. These architectures
are inefficient as they are intended to exploit sparsity present
in only one of the operands (W or IA). The dense processing
core can quickly adapt to accommodate one operand sparsity
by in-direct memory access.

EyerissV1 [16] is one of the early works investigating
activation sparsity to save power by employing data-gating
logic. When the IA is zero, the data gating logic disables the
weight read from a local spad and prevents the MAC data-
path from switching. Although this method improves energy
efficiency, it does not reduce latency. EyerissV2 [17] exploits
sparsity further in both IA and W by preserving the data in
compressed form all the way to the computational element
and adopting a row stationary dataflow like EyerissV1. They
employ a two-step search technique by retrieving non-zero
activations and then utilizing the IA’s channel index to fetch
non-zero weights, requiring a deeper pipeline and complex
processing element (PE) architecture. EyerissV2 employs an
external DRAM for storing the activations and parameters and
requires a complex hierarchical mesh network to route the
data to different computational elements on-chip. We avoid
such complexities in RAMAN as we target tinyML edge
applications with all on-chip memory implementation.

Computer architects face two significant challenges in de-
signing a sparse neural network accelerator leveraging both
IA and W sparsity. First is the front-end challenge, where
a sufficient number of non-zero IA and W pairs stored in a
compressed format must be transferred to the computational
unit to keep the MAC utilization high. Maintaining high
MAC utilization is often tricky because it requires channel
index matching to guarantee that the valid W-IA from the
same channel is multiplied. Second, the back-end challenge
where the partial-sum (Psum) addresses have to be aligned and
immediately reduced within the computational element before
a writeback. If the addresses are not aligned, then the Psums
cannot be reduced, leading to significant writeback traffic and
access contention. SCNN [18] and Sticker [19] try to overcome
the front-end challenge; however, these works are plagued by
the back-end problem. SCNN [18] uses channel-last dataflow
to maximize the multiplier utilization at the cost of high output
traffic and access contention. In the channel-last dataflow, the
non-zero W and IA values are first organized in the pixel di-
mension, followed by the channel dimension in memory. Since
any non-zero IA can be multiplied with any W in the same
channel, it’s easy to form non-zero W-IA pairs for computation
resulting in high MAC utilization. However, this approach
makes the Psum reduction (accumulation) highly challenging.
As a result, the output writeback traffic is very high and
requires a crossbar switch to arbitrate the data movement.
Sticker [19] also uses channel-last dataflow and adopts a two-
way set associative PEs to reduce memory access contention
and collisions. However, since this strategy requires data re-
ordering to prevent collisions, which are done offline using the
CPU, it ultimately defeats the whole purpose of latency and
energy reductions that sparsity offers. SNAP [20] is one of the

latest DNN accelerators that tries to overcome the back-end
problem by employing channel-first dataflow. Non-zero W and
IA data are organized and processed in the channel dimension
first and subsequently in the pixel dimension in the channel-
first dataflow. This ensures that the Psums calculated by the
multiplier array are locally reduced before writeback, thus
decreasing the writeback traffic. However, pairs of non-zero
IA and W of matching channels have to be extracted, and they
utilize address matching units (AMU) and sequence decoders
to do the same. The AMU uses N ×N comparators to match
W and IA channel indices, making it highly inefficient as the
area and power grow quadratically with N. EIE [21] exploits
both IA and W sparsity but only supports fully connected (FC)
layer making it incompatible to run convolution operations.

In addition, several FPGA-based implementations have been
proposed in the literature [22]–[28]. NullHop [22] exploits
the activation sparsity of the neurons in CNNs to accelerate
the computation and reduce storage. However, this work
does not exploit weight sparsity. Shah et al. [23] propose a
run-time programmable coprocessor architecture to accelerate
CNNs. However, programmability is limited to the standard
convolution-type networks, and the sparsity optimizations have
not been studied. McDanel et al. [24] propose a full-stack
optimization framework to speed up CNNs by leveraging
weight sparsity by column-combine strategy and reducing
power by clock gating when activations are zero. Zhang et
al. [25] and Nguyen et al. [26] propose CNN accelerators
for YOLOv2 networks, and their architectures are hardwired
to support a particular topology without any programming
flexibility. Ma et al. [27], and Yu et al. [28] provide FPGA
CNN implementations without exploiting sparsity and have
limited programming capability.

B. Our Contributions

This work presents a re-configurable and sparse deep neural
network accelerator that exploits both IA and W sparsity. To
address the front-end challenge, we employ Gustavson’s in-
spired dataflow [29] with the hardware-aware balanced weight
pruning strategy to keep workload uniform across all the
PEs and maintain high MAC utilization. The back-end issue
is resolved by reducing Psum locally within a processing
element (PE) array; this reduces the writeback bandwidth and
eliminates memory access contention because only the final
result is sent back to memory rather than every intermediate
result.

Latest advancements in quantization techniques [30], [31] in
DNNs have eliminated the need for floating-point arithmetic
(during inference), and simple energy-efficient fixed-point
arithmetic has proven adequate to achieve reasonable accuracy.
Despite having a highly efficient computational realm, today’s
design has a memory bottleneck which is evident from [32].
Memory access (especially DRAM) is orders of magnitude
more expensive than conventional arithmetic operations. The
most state-of-the-art DNN accelerators, except for EIE, utilize
an external DRAM to store IAs and Ws and pay the penalty of
unprecedented memory access cost. Since our architecture is
targeted at tinyML edge computing applications with stringent
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energy budgets, using external DRAM and paying high energy
costs becomes untenable. Thus, in this work, we do away
with the requirement for a DRAM and only use the on-chip
SRAM to store the model weights and its activations. However,
the memory size of the on-chip SRAM is limited due to
area constraints, which necessitates model optimizations to fit
modern networks such as MobileNets [5], [6] in SRAM. In
this work, we introduce a hardware-aware pruning strategy
to shrink the model size and intelligent memory scheduling to
minimize peak activation memory to accommodate both model
and activations on-chip.

Furthermore, prior works have limited flexibility regarding
layers supported, and unsupported layers are often executed
offline, making the overall system-level computation ineffi-
cient. This work supports a wide range of layer computations
from the conventional CNN networks to the modern depth-
wise separable convolutions constituting depth-wise (DW) and
point-wise (PW) layers. Our design also allows max pooling,
average pooling, fully connected layers, and residual additions
on-chip, eliminating the need to offload work to an external
CPU. In summary, the following are the contributions and
features of the RAMAN architecture presented in this paper:

• Memory Hierarchy: RAMAN employs a three-level mem-
ory hierarchy comprising low-cost levels such as reg-file
(RF) and cache to amortize the data access cost to the
high-cost on-chip global memory (GLB-MEM) (c.f. Section
II-B). The reg-file is used for Psum reduction locally inside
the PE to overcome the back-end challenges.

• Sparsity: RAMAN exploits both IA and W sparsity to
achieve higher throughput and energy efficiency. Sparsity
is leveraged in storage, computation and data movement.
Input activations are stored in compressed form in a cache,
and a simplified version of the compressed sparse row
(CSR) format [33] is used for storing weights in both
on-chip global memory and cache. Since RAMAN adopts
a hardware-aware balanced pruning technique, it is not
necessary to keep bounds/row index pointers, and thus
we have further optimized the CSR format based on our
requirements to minimize W storage (c.f. Section V of
the supplementary document). In computation, sparsity is
leveraged in two ways; for the layers with the maximum
computational density (such as PW), RAMAN can skip
the processing cycles with zero data, improving throughput
and energy efficiency. However, skipping processing cycles
won’t reap any benefit in the layers with relatively low
computational density (such as DW); in such cases, the
design only data-gates the cycles with zero data but does not
skip them. This strategy minimizes architectural complexity
and improves overall energy efficiency. Finally, sparsity is
utilized in data movement as only non-zero data is fetched
and propagated in the network, lowering memory bandwidth
and increasing energy efficiency even further.

• Programmability: RAMAN supports both traditional CNN
models and modern separable convolutional models that
constitute depth-wise and point-wise layers. In addition, it
supports the execution of max pooling, average pooling,
and fully connected layers. To enable this model and layer

flexibility, we propose a network-on-chip (NoC) that can
adapt to a wide range of bandwidth requirements. It can
provide a high bandwidth IA data from the cache to keep
the PEs busy when there is limited IA reuse (for DW
layers); when the IA reuse is high (in PW and FC layers),
it reduces IA data bandwidth and increases W bandwidth.
In addition, RAMAN offers an instruction memory and
a dedicated instruction set to store and program different
network topologies.

• Dataflow: RAMAN incorporates novel dataflow inspired by
Gustavson’s algorithm [29] to reduce memory access for the
PW layer, which is the most computationally intensive layer.
Additionally, the NoC is reconfigured to support weight
stationary dataflow for DW and standard convolutional
(CONV) layers. This hybrid dataflow architecture, enabled
by dynamic NoC reconfiguration, maps the computation of a
particular layer to its optimum dataflow to achieve maximum
energy efficiency and minimum data movement cost.

• Peak-Memory Reduction The state-of-the-art accelerators
logically partition the IAs and OAs inside the memory,
where the total activation memory is the sum of IA and
OA memory spaces. This logical partition is eliminated
in our work, and the OAs are directly overwritten onto
the IA memory space, lowering the peak activation mem-
ory requirements. RAMAN employs an intelligent memory
scheduling scheme presented in Section III-A to prevent
memory collision issues that ensue after removing the
logical partition.

• Run-time Activation Pruning (RAP): RAMAN performs
a hardware-aware activation pruning at run-time to in-
crease the activation sparsity, and the architecture effectively
leverages this strategy to increase throughput and energy
efficiency. We believe this is the first attempt of its kind, and
our offline experiments demonstrate the network’s resilience
to such pruning strategies. Section II-C provides a detailed
description of RAP.

• Hardware-aware balanced weight pruning: We propose
a hardware-aware balanced weight pruning strategy that
reduces memory storage, access, and processing latency. The
hardware-aware pruning is an example of software-hardware
co-optimization, where a DNN is pruned during the train-
ing process, considering the underlying hardware architec-
ture. By ensuring uniform zero/non-zero weight distribution
across the weight tiles, the balanced pruning methodology
solves the issue of workload imbalance. Without this strat-
egy, non-zero weights would be unevenly distributed over
different weight tiles processed by different PEs, resulting
in workload imbalance, and the overall performance would
be limited by the PE with the heaviest workload. The PEs
with low non-zero weight tile distribution completes their
execution sooner and must be stalled for the slower ones
(the PEs with high non-zero weight tile distribution).

• Flexible quantization: RAMAN supports variable precision
quantization of Ws and IAs supporting 2b, 4b, and 8b
precisions. In addition, the architecture is programmable
such that the precision of individual layers can vary to meet
the required accuracy, storage, and latency target.
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The rest of the paper is organized as follows: Section II
presents the architecture of the RAMAN accelerator. The
architectural features that make RAMAN feasible on edge are
highlighted in the Section III. Section IV provides implemen-
tation results, and Section V concludes this article.

II. SYSTEM ARCHITECTURE

A. Top-Level Architecture

Fig. 1 shows the top-level architecture of the RAMAN ac-
celerator system. The architecture can be broadly categorized
into:

Activation & Parameter
Cache

Global
Memory

PE

PE Array

PE PE PE

PE PE PE

PE PE PE PE

PE

Post
Processing

Activation
Sparsity Engine

Top-Level Controller Instruction
Memory

Layer Config.
 Inst. Stream

IAs/OAs/
Parameters

Column Router Row Router

Fig. 1: Top-level architecture.

• Compute: The compute sub-system comprises a processing
element (PE) array, an activation sparsity engine (ASE)
and a post-processing module (PPM). The multiply and
accumulate (MAC) operations are performed by 12 spatial
PEs in the PE array, which are arranged in a 3x4 rectangle.
The ASE leverages input activation sparsity to minimize
latency and power by skipping ineffectual zero compu-
tations. The PPM performs ReLU, quantization, pooling,
bias and residual addition operations. Sections II-C-II-E
gives a detailed description of the PE array, ASE and post-
processing module.

• Memory: The memory sub-system comprises an on-chip
global memory (GLB-MEM), activation and parameter
cache, and instruction memory. GLB-MEM stores the pa-
rameters of all layers and the input and output activations of
a specific layer. Cache exploits temporal reuse in parameters
and activations to reduce energy-expensive data access to
the large on-chip GLB-MEM. We employ a three-level
memory hierarchy composing GLB-MEM, cache and RFs
(inside PEs). In addition, we have the instruction memory to
store layer configuration instructions of individual layers. A
detailed description of the GLB-MEM and cache is provided
in Section II-B.

• Control: The control sub-system encompasses a top-level
controller to coordinate: 1) data transfer between the GLB-
MEM and cache; 2) traffic between the cache and PE array
utilizing the NoC; 3) traffic between the PE array, PPM and
GLB-MEM; 4) operations of the ASE, PE array, NoC, and
PPM. We do not use a separate controller for each of the

12 PEs since they are all identical and operate in lockstep,
meaning that their processing states are equivalent with
regard to one another. The top-level controller is responsible
for issuing the control signals to all the 12 PEs. A detailed
description is provided in Section VI of the supplementary
document.

B. Global and cache memory

The GLB-MEM comprises of activation and parameter
memory banks. We overlay the input and output activations
onto the same memory space, as discussed in Section III-A to
minimize the activation memory storage. The parameter mem-
ory is 192b wide with a single port synchronous read/write
interface, whereas the activation memory is 32b wide with
dual address ports.

Cache enables temporal reuse of IA and W, minimizing
the global memory accesses, which lower power consumption
incurred in accessing global memory. The cache memory is
a banked architecture comprising a set of 27 memory banks.
Each bank is an 8b wide dual port synchronous read/write
memory. Cache banks are dynamically partitioned based on the
layer being executed. For instance, three banks are designated
for activations in the PW layer, whereas twelve, four, and three
banks are set aside for activations in the DW, FC, and CONV
layers. W or IA are fetched directly from the GLB-MEM and
processed in the PE array skipping cache when reuse is low.
The global and cache memory block diagrams are shown in
Fig. 8 of the supplementary document.

C. Activation sparsity Engine (ASE)

The activation sparsity engine serves two purposes. First, it
reduces the cycles needed to write a block of data from the
GLB-MEM to cache through ping-pong-based shift registers.
Second, it aids in exploiting activation sparsity. Sparsity is
leveraged in two ways: 1) by data gating the cycles with
zero data and disabling the memory read to prevent the
datapath from switching, thereby reducing dynamic power; 2)
by skipping the processing cycles entirely to improve energy
efficiency and throughput. IAs are routed through the ASE to
record the position of zeros, and this information is utilized
during computation to either gate or skip zero computation,
depending on the layer under execution. The layers with low
computing density (e.g., DW) adopt the gating strategy, and the
layers with relatively high computational density (e.g., PW)
employ the zero skipping technique in addition to data gating.
This hybrid approach reduces architectural complexity since
imposing zero skipping during DW execution has no positive
impact on performance. The design details of the ASE are
provided in Section II of the supplementary document.

Area overhead of the ASE in terms of LUTs (lookup
tables), registers and memory utilization is insignificant, as
demonstrated in Section IV.

1) ASE illustration: Fig. 3(a) illustrates the working of ASE
for the PW layer. The three IA tiles are loaded into the shift
register bank, and the non-zero detector module generates
the bitmap. In Fig. 3(a), the second input channel of tile-
2 is pruned as the value is less than the threshold value of
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Fig. 3: (a) ASE Illustration for the PW layer. (b) Processing Element (Type-1).

20, inside the RAP block. The bitmap matrix is column-wise
ORed to obtain the OR_BITS vector. The columns (2 and 3)
are skipped during computation as all elements are zero post
RAP. The channel indices (1 and 4) are cached in buffers 2 and
3, and they are subsequently utilized as addresses to retrieve
the corresponding input channel weight from the cache during
computation. Additionally, the column-wise bitmap is stored
in buffer 1 for non-zero channel indices (1 and 4), which is
accessible during computation cycles to activate or disable the

PE’s data registers as depicted in the figure. In the example
shown, for the first input channel, all the rows of the PE array
are active as the bitmap is ′111′ for that particular column, and
in the fourth channel, row-2 of the PE array is deactivated as
the bitmap is ′101′. Additionally, only the non-zero elements
of the IA matrix are saved in cache banks utilizing the bitmap
data. Just the bitmap is saved in buffers for other layers, not
channel indices, as they only facilitate data gating and not
cycle skipping.
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D. PE Array

The PE array comprises 12 processing elements spatially
distributed along three rows and four columns. It is coupled
with the Network-on-chip to route the data among different
PEs.

1) Network-on-chip: The network-on-chip handles data de-
livery between the cache, the PE array, and between different
PEs. The following are the NoC’s responsibilities: 1) Support
various data delivery patterns needed by different layers; 2)
Provide sufficient data bandwidth for parallel processing to
keep the PEs active and improve utilization; 3) Handle various
strides and padding, and 4) Leverage spatial data reuse to
increase energy efficiency.

To accomplish this, we employ a network of row and
column routers. The column routers distribute a cached data
block across four columns of the PE array, while the row
router further splits the incoming packets and delivers input
to the PE in a specific row. Furthermore, the output from the
PEs is directed to the post-processing module via the row
routers. Section II-F goes into greater detail on the various
data delivery patterns to perform different layer computations.

2) Processing Element: Fig. 3(b) shows the architecture of
the PE. We employ three types of PEs to support dataflow
flexibility for different layer types. The architectures of the
other two PE types constituting the last column of the PE array
are presented in Figs. 10, 11 of the supplementary document.
The fundamental elements of all PE configurations are an
8b multiplier, a 24b adder constituting MAC (Multiply and
Accumulate Unit), and a reg-file. 8b W and IAs are provided
as input and accumulated using the MAC unit, and a 24b
Psum is saved in the RF. Offline experiments show that the
Psum could fit within the 24b range. The type-2 and type-
3 PEs use four-ported RF (4 input & output ports), while
the RF in type-1 PE has four input and eight output ports,
each with a width of 24b and a depth of 16. Thus, the RF
can be addressed using 4b. The Psums are locally reduced
inside the PE array, and the final result is written back to
the memory after quantization in PPM, thereby reducing the
writeback bandwidth and eliminating memory contention.
Power saving: PE implements data-gating logic to leverage
zeros in the IAs for saving processing power in the layers

with low computational density, such as DW. The red-bordered
registers in Fig. 3(b) are data-gated, and if a zero IA value is
detected (provided by the bitmap bits stored in ASE buffers),
then the gating registers are disabled to prevent the MAC
datapath from switching.
SIMD support: PE supports SIMD processing, evident from
Fig. 3(b), by performing four MAC operations per cycle,
thereby speeding up the processing four times. In addition,
SIMD processing also enables W and IA reuse, thereby
reducing the number of memory accesses. RF has four write
ports to simultaneously write the Psums from the four MAC
units.
Variable precision: The PE datapath supports variable preci-
sion Ws and IAs. The reconfiguration of the data path for the
4b-W and 4b-IA using the same 8b datapath is shown in Fig. 3
(b). First, two 4b-Ws and 4b-IAs are packed as an input to the
8b multiplier to compute two 4b multiplications doubling the
throughput. Next, the accumulator reduces the ensuing partial
outputs (PO1 and PO2), each 8b wide. Similarly, for the 2b-
W and 2b-IA case, the multiplier simultaneously does four 2b
multiplications boosting throughput by 4x.

E. Post Processing Module

The post-processing module (PPM) is responsible for ReLU
activation, bias addition, quantization, residual addition, max
pooling, and average pooling operations. The PPM opera-
tions can broadly be categorized into memory pre-fetching,
computation, and writeback stages. In the pre-fetching phase,
the post-processing parameters such as bias (b), α, and β
are pre-fetched from the GLB-MEM and cached locally in a
160b wide parameter buffer. α and β represent dyadic scaling
parameters computed offline. The pre-fetching is overlapped
with the PE array computations to amortize the memory access
latency. In the computation phase, the Psum output obtained
from the PE array is added with bias in sub-module (a) of Fig.
4. The result is then passed to the ReLU block that clamps
the negative values. ReLU is implemented by a sign-bit (MSB)
bit comparison. If the MSB bit is 0, the ReLU block outputs
the input; else, it outputs a zero. The output of this block
is a ReLU-activated Psum which is then quantized to obtain
an 8b representation and written back to the memory. The
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Fig. 5: Dataflow configuration across an array of PEs in RAMAN for (a) DW computation (b) PW computation and (c) FC
computation.

quantization operation is performed in sub-module (c) of Fig.
4. The implementation detail of the quantization operation is
provided in Section III of the supplementary document.

The same hardware can be reused to perform average
pooling and max-pooling operations. For average pooling, the
adder used for bias addition is re-purposed as an accumulator,
and the parameter buffer is re-purposed to store the interme-
diate accumulation results. Division of the accumulated sum
by HW (Height × Width of the feature map) is performed
in the sub-module (c) by expressing 1/HW in the dyadic
form

α

2β
. An additional comparator is needed for max-pooling,

as shown in sub-module (a). The PPM also supports residual
input additions in sub-module (b).

PPM uses 4-way SIMD to improve throughput by perform-
ing 4 post-processing operations each cycle.

F. Dataflow

1) DW: DW layer uses a weight stationary systolic dataflow
where the W remains static during the computation. IAs of
dimension (Hin ×Win ×M) are partitioned into tiles of size
(1×Win×4) and Ws of dimension (3×3×M) are partitioned

into tiles of size (3× 3× 4). Then three IA tiles are streamed
from the cache to the PE array from top-to-bottom, and the
Psum obtained is spatially reduced along the PE columns
from left-to-right. A global accumulation is performed by the
last column of PEs to obtain a final accumulated result. This
mapping allows the reuse of IA along a column and Psums are
spatially reduced inside the PE array. Since each PE supports
SIMD with four MAC operations per cycle, four input IA
channels are convolved with four W channels in every cycle.
The systolic data flow necessitates proper synchronization of
IA and Psums, as shown in Fig. 5(a). Each processing run
generates a tile of OA of size (1 × Wout × 4), and it takes
(Hout × 1 × M/4) runs to obtain all outputs. The dataflow
also allows strided convolution and zero-padding. The CONV
layer uses the same dataflow as the DW.

2) PW: The PW layer execution can be represented by
2D matrix multiplication of IA with dimension (HW × M )
and weight W with dimension (M ×N ) to produce OA with
dimension (HW × N ) as shown in Fig. 5(b), where M and
N are number of input and output channels respectively. The
IA matrix is partitioned into HW tiles each sizing (1 ×M ),
and the W matrix is partitioned into N/n tiles each sizing
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(M×n). Since the PE array comprises 3×4 PEs, three IA tiles
and four W tiles are passed to the PE array for computation
in a single processing run. An IA tile is broadcasted to four
PEs in a row, and a W tile is broadcasted to three PEs in a
column. This mapping allows spatial reuse of IA along a row
and W along a column. The Psums are locally accumulated
and stored in the RF of individual PEs, and the final Psum is
transferred to the PPM through row routers of NoC, reducing
output writeback traffic to GLB-MEM. The IA and W tiles
are sent to the PE array in compressed form for computation.
In every processing run, (3×4n) tile of OA is generated, and
it takes (HW/3) × (N/4n) runs to construct the entire OA
matrix. n depends on the RF depth and is set to 16 in our
implementation. This dataflow ensures the maximum reuse of
IA and W with low OA writeback bandwidth.

3) FC: The FC layer can be represented by vector-matrix
multiplication, as shown in Fig. 5(c). The IA is denoted as
a vector of size (1 × M ), and W is denoted as a matrix of
size (M ×N ). The IA vector is divided into four tiles of size
(1 × M/4), and each tile is broadcasted to three PEs in a
column. The W matrix is divided into 4 × N/6 tiles of size
(M/4×6) and is multicasted to three PEs in a column. A single
PE receives two weights and a single activation per clock cycle
and performs two MAC operations. The Psum reduction is
made in two levels: PE-level and core-level. At the PE level,
M/4 activations and M/4× 2 weights are streamed into each
PE, and the resulting Psums are locally accumulated inside
PE for M/4 cycles. At the core-level, the Psums stored in the
RF of each PE are spatially reduced along four columns of the
PE array. This two-level Psum reduction reduces the writeback
traffic to GLB-MEM. The last column output provides the final
result, which is sent to the PPM. Six OAs are generated in
every processing run, and N/6 runs are required to construct
the entire output vector. Each PE only uses two of the four
MAC units available due to bandwidth constraints and low-
weight reuse in the FC layer.

III. RAMAN MEMORY OPTIMIZATIONS TO SUPPORT
DEPLOYMENT AT THE EDGE.

The RAMAN accelerator was developed targeting tinyML
edge computing applications, and the following are the fea-
tures that enable RAMAN to be deployable on edge:

A. Peak activation memory reduction:

The state-of-the-art (SOA) accelerators use two different
memory spaces for storing IAs and OAs in a single memory.
The IA and OA memory spaces are logically partitioned to
prevent memory collision issue. This conventional approach
requires a peak memory of:

MEM_size(SOA) = max({sum(IAl, OAl)}Ll=1) (1)

Where MEM_size(SOA) denotes the peak memory re-
quired by the state-of-the-art accelerators, L represents the
total number of layers in the network, IAl, OAl represents the
IA and OA memory sizes of a particular layer ′l′. Effectively
in the conventional approach, the activation memory size is
governed by the layer with the maximum sum of IA and OA
memory sizes.

In our approach, as illustrated in Fig. 6, the logical partition
between IA and OA memory spaces is eliminated, meaning
that the OAs are overwritten in the same IA memory space.
The memory size required by the proposed approach is given
by:

MEM_size(RAMAN) = max({max(IAl, OAl)}Ll=1) (2)

Where MEM_size(RAMAN) denotes the peak memory
required by RAMAN. Compared with the conventional ap-
proach, the proposed memory reduction scheme reduces the
peak activation memory of the MobileNetV1† model trained
for visual wake word (VWW) task by 37% and the DS-CNN†

model trained for keyword spotting (KWS) application by 49%
as shown in Fig. 6. We have made a couple of modifications
to the original MobileNetV1 [5] and DS-CNN models [34] as
per our requirements, and the modified models are denoted as
MobileNetV1† and DS-CNN† models from here on.
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Fig. 7: Comparison of dataflows in terms of memory accesses.

However, the memory collision issue arises while overwrit-
ing the OA into the IA memory space if the IA is not consumed
before the OA writeback. This problem can be solved by
storing a copy of the IA tile in the cache and then proceeding
with the computation, as shown in Fig. 6. This makes the
original copy of the IA tile (e.g., IA tile-1 in Fig. 6) in the
GLB-MEM activation bank redundant, allowing the OA tile to
occupy that space. The disparity in tile sizes between IA and
OA is another challenge with the proposed approach. If the OA
tile is larger than the IA tile, it might corrupt the contents of
IA tile-2 by overflowing the memory area of IA tile-1 (cf. Fig.
6) and spilling over the subsequent tile (e.g., IA tile-2 in Fig.
6). This is particularly true in the PW layer when N>M, but
it’s not a concern in the DW layer because OA is always less
than (if stride>1) or equal (if stride=1) to IA. Intelligent data
organization inside the memory and pre-fetching the IA tile-2
to the cache prior to OA tile-1 writeback aids in resolving this
issue.

B. Dataflow to reduce memory accesses:

Fig. 7 shows the GLB-MEM memory accesses evaluated
for a single PE for different dataflows and their corresponding
abstract loop nests. The analysis was carried out on the PW
layers of the MobileNetV1† model [5], whose operation can
be described as a matrix-multiplication of IA(HW×M) ×
W(M×N), where input channel M is a shared dimension of
multiplication.

The output stationary (OS) dataflow, also termed inner
product dataflow has the shared dimension in the innermost
loop and achieves good output reuse (M times) but has poor
input reuse. It computes an OA element one at a time by
traversing a row of IA and a column of W. On the other
hand, the Input stationary (IS) and the Weight stationary (WS)
dataflows achieve good input reuse (N times) and weight reuse
(HW times), respectively, but poor output reuse. It computes
one partial output matrix (PO) of size (HW × N ) at a time

by traversing a row of W and a column of IA in IS (or
a column of WT and a row of IAT in WS) and M such
matrices are generated before the final reduction. The size of
the partial output matrix is massive to be stored locally inside
the PE and thus has to be saved in the GLB-MEM, creating
significant output data traffic evident from Fig. 7. Additionally,
the bandwidth required by the partial output matrix (24b value)
is much higher than the final output (8b value). Thus, moving
the partial output matrix from PE to GLB-MEM is costly.

In this work, we employ a RAMAN dataflow (RD) inspired
by Gustavson’s algorithm to reduce the overall data-movement
cost of the PW layer. It computes a row of 16 OAs at a time
by traversing a row of IA, and a row of 16 elements from W.
Since just 16 partial outputs are generated at a time, it is locally
stored and reduced inside the PE. The dataflow is the most
efficient as it avoids the two extremes of OS (by reusing IA
by a factor of 16) and IS/WS (by eliminating the partial output
traffic) dataflows. Only the quantized 8b accumulation result
is sent to the GLB-MEM, drastically decreasing the output
traffic. The W accesses from the GLB-MEM are reduced by
storing a W tile in the cache and re-using them for HW times
in the PW layer. Compared to the OS and IS/WS dataflows, the
RAMAN dataflow significantly reduces the PW layer memory
access by 1.9x and 6.5x, respectively.

IV. IMPLEMENTATION RESULTS

This section assesses the RAMAN’s performance on Efinix
FPGA [35].

A. Efinix FPGA Implementation Results

We evaluate RAMAN’s performance on popular networks
aimed at tinyML edge computing applications: MobileNetV1
and DS-CNN. The input dimensions are resized as per the
requirement: 96 × 96 for the MobileNetV1† and 30 × 32 for
the DS-CNN† model. The DS-CNN† model was trained on
the google speech command dataset for the keyword spotting
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Fig. 8: Leveraging sparsity in latency reduction: Compile-time and run-time latency vs. accuracy trade-off for MobileNetV1†

model (left-panel) and DS-CNN† model (right-panel). Top-panel: Latency of RAMAN for different weight sparsity (pruning)
ratios set at compile time. Bottom-panel: Latency distribution of PW layers in RAMAN with run-time activation pruning at
different activation pruning thresholds (θ) with accuracy highlighted. The accuracy and latency estimates are for two tasks:
keyword spotting using the DS-CNN† model trained on the Google speech command dataset and image classification using
the MobileNetV1† model trained on the VWW dataset.

(KWS) application [36]. The input audio with each 1s duration
was sampled at 16KHz and fed to the cascade of asymmetric
resonators [37] to generate a cochleagram. RAMAN used the
output cochleagram of size 30 × 32 as an input to infer the
keyword. The MobileNetV1† model was trained on the Visual
Wake Words (VWW) dataset [38] with input image converted
to gray-scale. The specific MobileNetV1† and DS-CNN†

network architectures deployed on RAMAN are provided in
Section IX of the supplementary document.

RAMAN was implemented on an Efinix Ti60 FPGA, with
parameters, instructions, and pre-processed inputs written into
corresponding memories. The specifications of the RAMAN
architecture are shown in Table I. The LUT breakdown of
the RAMAN architecture is shown in Fig. 9(a). It is evident
that the controller and the PE array consume most of the
LUTs in FPGA fabric, accounting for 86% of LUTs, and the
ASE utilization is insignificant. Fig. 9(b) shows the register
breakdown of the RAMAN architecture. The PE array utilizes
52% of the registers since each PE comprises 16× 24b RF to
store Psums. RAMAN provides the flexibility to downsize the
PE RF width to 20b (or lower) depending on the application
to reduce register utilization. The PPM stores post-processing

parameters in registers leading to 32% register utilization. The
LUTs and registers are inferred as the eXchangeable Logic and
Routing (XLR) cells in Efinix FPGA.

The RAMAN architecture comprises 48 MAC units operat-
ing at 75 MHz, which theoretically translates to a throughput
of 7.2 GOp/s. However, since operations involving zero are
skipped in the PW layer, we achieve an effective throughput
of 13.5 GOp/s and 10.5 GOp/s for the MobileNetV1† and
DS-CNN† models, respectively by exploiting both activation
and weight sparsity. The power consumption of the RAMAN
architecture on Efinix Ti60 FPGA is estimated to be 136.96
mW (89.37 mW dynamic power + 47.6 mW static power) and
131.77 mW (84.39 mW dynamic power + 47.38 mW static
power) for the MobileNetV1† and DS-CNN† models, respec-
tively. Therefore, the effective power efficiency of RAMAN
at 75 MHz and 75% PW weight sparsity is 98.4 GOp/s/W
(or equivalently 2355 Inferences/J) for the MobileNetV1†

and 79.68 GOp/s/W (or equivalently 6609 Inferences/J) for
the DS-CNN† model. The power and memory breakdown of
the RAMAN architecture is provided in Section X of the
supplementary document.

The average MAC utilization of the DW and PW layers is
around 59% and 86%, respectively, with overall utilization of
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TABLE I: RAMAN Specifications.

Platform Efinix Ti60

Layers Supported
CONV, DW, PW,

FC and Max/Average pooling.
Number of PEs 12 (4 MACs/PE)

Reg-file Memory
PE Array: 0.576 KB

PPM: 0.32 KB
Clock Rate 75 MHz

Arithmetic Precision
W & IAs: 2b, 4b or 8b fixed point,

Psums: 24b fixed point.

Power
137 mW for MobileNetV1†

132 mW for DS-CNN†

XLR cells 52261 (85.96% util.)
DSPs 61 (38.12% util.)

Memory Blocks
168 (65.62% util.) for MobileNetV1†

118 (46.09% util.) for DS-CNN†

Theoretical Throughput 7.2 GOp/s (3.6 GMACS)

Effective Throughput
13.5 GOp/s for MobileNetV1†

10.5 GOp/s for DS-CNN†

Energy Efficiency
2355 Inferences/J for MobileNetV1†

6609 Inferences/J for DS-CNN†

78%. DW layers have a lower MAC utilization due to limited
IA re-use and the time spent to fetch the IAs and Ws from
the GLB-MEM memory. On the other hand, memory access
latency of the PW layers in RAMAN is completely hidden
with MAC operations; however, the latency introduced due to
data fetch from the RF of PEs cannot be completely hidden
as the next tile’s MAC operation can be started only after
completely evicting the contents of the RF of the current tile.
The MAC units remain idle while fetching the contents of
RF and transferring them to the post-processing module. This
problem can be solved by double buffering the reg-file in the
PEs, increasing the PW layer utilization to 97%.

B. Sparsity Results

1) Leveraging sparsity in latency reduction: Fig. 8 shows
the accuracy vs. latency trade-off at compile-time and run-
time. Figs. 8(a) and 8(b) demonstrate the RAMAN processing
latency and model accuracy as a function of weight sparsity for
the MobileNetV1† and DS-CNN† models, respectively. The
required degree of weight sparsity is pre-set at compile time
using the hardware-aware balanced weight pruning technique
described in Section V of the supplementary document. The
performance is assessed for four weight sparsity levels. It is
evident that the latency reduction is almost linear with the
degree of weight sparsity, and the accuracy degradation is
minimal. Additionally, the latency distribution for the PW
layers of the MobileNetV1† and DS-CNN† models are shown
in Figs.8(c) and 8(d). There is a significant reduction in latency
by leveraging IA sparsity. The latency gains are substantial in
the final layers of the MobileNetV1† model due to an increase
in IA sparsity and number of operations. In contrast, the DS-
CNN† model is computationally intensive in the initial layers.
Furthermore, we compare the latency after run-time activation
pruning for different thresholds. Thresholds are set based on
the input data distribution. For the MobileNetV1† model, RAP

with pruning threshold 40 reduces latency by an additional
16% compared to no pruning case, with accuracy degradation
of ≈2%. For the DS-CNN† model, RAP reduces total latency
by 12% with the pruning threshold set at 20. However, the
possibility of minimizing latency with RAP is only confined
to the initial layers since the final layers of DS-CNN† have
low computational intensity.

2) Leveraging sparsity in memory access reduction: Table
II shows the activation cache access breakdown for different
layer types of the MobileNetV1† and DS-CNN† models. It is
evident from the table that the majority of the cache accesses
happen in the DW-PW layers, and the activation cache reads
are more than the cache writes, leading to effective cache
reuse. Additionally, leveraging IA sparsity reduces the cache
accesses by 40 − 45%. Finally, Table III presents the weight
cache access breakdown for different sparsity or pruning ratios.
Again, a similar trend is observed where reads dominate
writes, indicating effective cache reuse and the cache accesses
reduce with increased sparsity ratio. In addition, it is observed
that the weight cache reads are further reduced by 30% with
IA sparsity since when the IA value is zero, the corresponding
weight is not read from memory. However, the weight cache
writes remain the same since all weight values are loaded to
the cache initially, irrespective of IA sparsity. In addition, run-
time activation pruning reduces IA cache access by 8− 10%,
and parameter cache reads by 13− 21%.

TABLE II: Activation cache access breakdown for (a) DS-
CNN† and (b) MobileNetV1† model.

Layer
With IA sparsity (in KB) Without IA sparsity (in KB)

Read Write Read Write
(a) (b) (a) (b) (a) (b) (a) (b)

CONV 0.5 9.8 0.2 6.7 2.7 13.5 0.96 9.2
DW 171 356 77 144 281 630 129 246
PW 47 173 47 173 76 335 76 335
Pool 0 0 0 0 0 0 0 0
FC 0.13 0.26 0.06 0.26 0.13 0.26 0.06 0.26

Total 219 539 124 323 360 979 206 590

TABLE III: Weight cache access breakdown for (a) DS-CNN†

and (b) MobileNetV1† model.

Weight
Sparsity

Read (in KB) Write (in KB)
With IA sparsity Without IA sparsity -
(a) (b) (a) (b) (a) (b)

0% 1727 6344 2451 9425 49 295
25% 1295 4908 1839 7250 37 222
50% 863 3472 1226 5075 25 149
75% 432 2036 613 2900 12 76

3) Leveraging sparsity in storage reduction: The global
memory requirements of the design are tabulated in Table
IV. The peak activation memory needed is obtained by
overwriting OAs in the same IA memory space. The
parameter memory needed is the sum of memory needed
to store weights and post-processing parameters of all the
layers. Taking pruning into account, the parameter memory
reduces with an increase in pruning percentage, as shown in
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Table IV.

TABLE IV: Global memory requirements.

Memory
(in KB)

Activation
Memory

Parameter Memory with
different pruning ratios

0 0.25 0.5 0.75
DS-CNN† 54.72 61.968 49.656 37.392 25.104

Mobile
-NetV1†

44.56 324.288 251.328 178.368 105.384

C. Comparison with prior works

We compare RAMAN with other state-of-the-art (SOA)
implementations in Table V. While most SOA accelerators
support just CONV, RAMAN supports a wide range of DNN
topologies, including CONV (standard convolutions), DW +
PW (separable convolutions), FC, max and average pooling
layers. RAMAN supports variable precision quantization of
IAs and Ws. Unlike other SOA implementations, which use
both on-chip and off-chip memories, RAMAN, being a tinyML
edge accelerator, exclusively employs an on-chip memory to
store activations and weights.

RAMAN’s resource utilization and power efficiency are
significantly better than other prior implementations making
it an ideal candidate for resource-constrained edge devices.
Table V also compares the architectural features regarding
sparsity, peak-memory reduction and programmability. Very
few works in the literature leverage sparsity in their design.
NullHop [22] presents an architecture that exploits activation
sparsity to accelerate computation (by zero skipping) and
reduce storage requirements. However, the architecture doesn’t
exploit weight sparsity. McDanel et al. [24] present a method
to exploit weight sparsity in the systolic arrays by a column-
combining scheme that packs the sparse non-zero weights
into a denser format. The activation sparsity is leveraged by
clock-gating the logic when the activation is zero to save
power. However, this method won’t save computation cycles
and memory accesses like in RAMAN. Unlike other prior
implementations shown in Table V, RAMAN co-optimizes
the software and hardware stack by training the model based
on the underlying accelerator constraints. Hardware-aware
pruning is one such optimization vector, where the network

is pruned to reduce the workload imbalance of different PEs
and improve utilization. Additionally, RAMAN performs run-
time activation pruning and peak-activation memory reduction
to make it compatible with tinyML edge applications which
none of the other implementation support. Furthermore, most
prior implementations are limited to standard convolution
layers, and the unsupported ones are processed off-chip. In
contrast, our design can support different network topologies
eliminating the off-chip computation or FPGA reconfiguration.

V. CONCLUSIONS

Deep neural networks (DNNs) introduce weight and acti-
vation sparsity, enabling deep learning applications to oper-
ate more efficiently on hardware platforms with constrained
resources and energy. However, these sparse models need
specialized hardware architectures to fully benefit from the
sparsity for storage, latency, and energy gains. In this work, a
reconfigurable and sparse neural network accelerator exploit-
ing both weight and activation sparsity is proposed. RAMAN
uses an activation sparsity engine to leverage unstructured
activation sparsity and a hardware-aware balanced pruning
to exploit structured weight sparsity. We propose a novel
dataflow inspired by Gustavson’s algorithm that enables the
Psum reduction with the PE array and significantly reduces the
writeback traffic. The dataflow reduces the PW layer memory
accesses by 1.9x compared to output stationary dataflow and
6.5x compared to input/weight stationary dataflow. Further-
more, we propose a technique to lower peak memory activation
by overlaying IA and OA on the same memory space, which
can reduce storage requirements by up to 50%. These memory
optimizations in terms of memory accesses and memory
storage enable RAMAN to be deployable on edge with a small
form factor.

RAMAN supports a wide range of DNN topologies from
standard CNN layers to modern DS-CNNs and can be con-
figured to support accuracy vs. power/latency tradeoffs using
techniques deployed at compile time and run time. RAMAN
architecture was implemented on Efinix FPGA with 37.2K
LUTs using 48 MAC units distributed across 3 × 4 PEs.
The design achieves an overall energy efficiency of 2355 and
6609 Inference/J for MobileNetV1† and DS-CNN† models
at 75 MHz on Efinix FPGA. The effective power efficiency
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TABLE V: Comparison with the state-of-the-art (SOA) FPGA implementations.

NullHop
[22]

Shah et al.
[23]

McDanel et al.
[24]

Zhang et al.
[25]

Nguyen et al.
[26]

Ma et al.
[27]

Yu et al.
[28]

RAMAN
(This work)

Platform
Xilinx

Zynq-7100
Xilinx

Virtex-7
Xilinx

Virtex-7
Xilinx

Zynq-7000
Xilinx

Virtex-7
Intel Arria

10 GX
Xilinx

Kintex-7
Efinix
Ti60

Layers
Supported

CONV CONV
CONV+
PW+FC

CONV CONV
CONV+
Pool+FC

CONV+
Pool+FC

CONV+DW+
PW+Pool+FC

Num. of
Mults

128 1024 N/A 288 N/A 3136 1024 48

Precision 16b 18b N/A 8b W:1b & IA:6b 16b 8b 2, 4 or 8b
LUTs 229k 78.32k 239k 83.24k 86k 138k§ 94.76k 37.2k

Registers 107k 96.93k 201k 109k 60k N/A 150.85k 8.6k
DSPs 128 1034 112 192 168 1518 516 61

Frequency (MHz) 60 150 170 200 200 200 200 75
Power Efficiency

(GOp/s/W)
27.4 7.2 N/A 18.71 53.29 N/A 21.45 98.47⋆

Leveraging
Act. Sparsity

Yes (Zero-
skipping)

No
Yes (Clock-

gating)
No No No No

Yes (Zero-
skipping & gating)

Leveraging
Weight Sparsity

No No Yes No No No No Yes

Hardware-Aware
Pruning

No No No No No No No Yes

Run-time
Act. Pruning

No No No No No No No Yes

Peak Act.
Mem. Reduction

No No No No No No No Yes

Variable Precision No No No No No No No Yes
Run-time

Programmability
Limited to

CONV
Limited to

CONV
Limited No¶ No¶ Limited Limited Yes

¶The architecture is limited to YOLOv2 implementation.
§For Intel FPGA (Logic elements/ALMs).
⋆Estimated for 8b precision.
Run-time programmability means that the accelerator can support different network topologies without reconfiguring FPGA or synthesizing
the design again.

of the system is estimated to be 98.4 and 79.68 GOp/s/W
for MobileNetV1† and DS-CNN† models, respectively. A
demonstration video of the proposed RAMAN accelerator on
the Efinix Ti60 FPGA board for the keyword spotting task,
where we control the maze game using the keywords uttered
by the user, can be found here https://youtu.be/sCksj7nlBY8.
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I. CNN BASICS

The CNN algorithm is built by stacking many computation
layers for feature extraction and classification. CNN layers
apply filters to an input feature map to extract embedded
features and generate an output feature map as shown in Fig. 1.
By constructing a very deep hierarchy of layers, modern CNNs
achieve significantly higher accuracy by transforming the input
image data into highly abstract representations known as
feature maps. The computation of a layer in CNN is defined
by:

OAn,x,y = ReLU


bn +

M−1∑

m=0

K−1∑

i=0

K−1∑

j=0

IAm,x+i,y+i

·Wn,m,i,j




(1)

Where H/W is the height and width of the input feature
map denoted as IA, H ′/W ′ is the height and width of the
output feature map denoted as OA. M is the number of input
channels, and N is the number of filters or output channels.
W denotes the weight and K denotes the filter height and
width. A rectified linear unit (ReLU) activation function is
applied to introduce non-linearity. The computational cost of
the convolution is:

K ·K ·M ·N ·H ·W (2)

CNN computation can be divided into two phases: 1)
Training- where parameters are trained by observing a vast
amount of training examples, and 2) Inference- where the
network is deployed in the field with the trained parameters.
Training is performed on the cloud on GPUs, and inference
depends on the application and can employ GPUs, CPUs,
MCUs, or customized neural network accelerators. For edge
applications with limited area and power budget, customized
neural network accelerators are preferred. However, DNNs
require millions of operations even during inference, neces-
sitating software and hardware optimizations to be deployable
on edge. One such network architecture that seeks to minimize
the number of operations is depth-wise separable convolutions
(DS-CNNs), rendering it ideal for deployment on the edge.

The DS-CNN splits the convolution process into a point-
wise and a depth-wise convolution. The depth-wise convolu-
tion applies a single filter for every input channel to capture
the spatial information as shown in Fig. 2(a). In the point-wise
convolution, we apply a 1x1 filter to combine the output of
the depth-wise convolution as shown in Fig. 2(b). A standard
convolution filters and combines in a single step, whereas the

DS-CNN does the same in two stages. As a result, the model
size and computation are reduced substantially, which is ideal
for tinyML edge applications.

Depth-wise convolution with one filter per input channel
can be written as:

OAx,y,m =

K−1∑

i=0

K−1∑

j=0

Wi,j,m · IAx+i,y+j,m (3)

where W is the depth-wise convolutional kernel of size K ×
K×M where the mth filter in W is applied to the mth channel
in IA to produce the mth channel of the filtered output feature
map OA.

Depth-wise convolution has the computational cost of:

K ·K ·M ·H ·W (4)

The sum of depth-wise and 1 × 1 point-wise convolutions
cost:

K ·K ·M ·H ·W +M ·N ·H ·W (5)

By expressing standard convolution as depth-wise separable
convolution, we get a reduction in the computation by:

K ·K ·M ·H ·W +M ·N ·H ·W
K ·K ·M ·N ·H ·W

=
1

N
+

1

K ·K
Thus, the DS-CNN model inherently reduces the number of

operations carried out during inference.

II. ACTIVATION SPARSITY ENGINE DESIGN

The ASE consists of five major blocks, as shown in Fig. 3.
• Shift Register Bank: Consists of six parallel shift registers

(SRs), with even and odd SR pairs ping-ponging to minimize
the time required to write a block of data from the GLB-
MEM to cache. To begin with, all even SRs are in input
mode, while all odd SRs are in shift/output mode, and the
functionality is inverted in the following epoch. In the input
mode, we load 32b activations parallelly into four registers
of a SR. In the output/shift mode, 8b data is serially shifted
into the non-zero detector block.

• Ping-Pong Enable Logic: Comprises a counter and 2:4
decoder to activate appropriate SRs in the shift register bank.
The contents of the SRs are shifted when the shift control
signal is asserted.

• Non-Zero Detector: The IAs read from the shift register
bank are compared with zero to generate bitmap (b0 to
b2, B3), which is 1 when the IA value is not equal to 0
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Fig. 1: Computation of a CNN layer.
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 filters

PW

(b)

Fig. 2: DS-CNN computation of a layer. (a) Depth-wise (DW) computation, and (b) Point-wise (PW) computation.

and 0 otherwise, thus recording the position of zeros. The
bitmap bits (b0 to b2) are sent to the run-time activation
pruning (RAP) logic to perform activation pruning and
generate a new set of bitmap bits (B0 to B2). Then the
bits (B0 to B2) obtained from RAP are ‘OR’ed to generate
OR_BIT , which is required for zero skipping in the PW
layer. The bitmap bits, along with the OR_BIT , are fed to
the succeeding bitmap and non-zero channel index buffer
module.

• Run-time Activation Pruning (RAP): As the name sug-
gests, the RAP performs activation pruning during inference
to improve the throughput and minimize computation la-
tency. In our implementation, IA in the PW layer is tiled
with each sizing 1 × M , and three rows of the PE array
simultaneously process three such tiles, i.e., 3×M block of
IA is processed in a single epoch. However, if all activations

in a column of 3 × M block are zeros, that particular
input channel or column is skipped entirely during the
computation. Suppose there is only one non-zero activation
in a column and the rest are 0; that activation value is pruned
if it’s below the predetermined threshold (θ) so that the
column may be skipped during processing. The threshold
value is precomputed during the training phase based on the
input and hidden layers activation distribution. A pseudo-
code of the RAP logic is shown in Fig. 3. When any one
of the bitmap bits (b0 to b2) is 1, and the remaining are 0s,
then the activation values (a0 to a2) are compared with the
threshold. If the value ak is lesser than the threshold, then
the corresponding bitmap bit Bk is made 0. If a column
has more than one non-zero element, then the input bitmap
bits to the RAP (b0 to b2) are retained. RAP improves
the throughput by ≈(10 − 15)%, and offers accuracy vs
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Fig. 3: Activation sparsity engine.

energy/latency tradeoff which can be configured at run-time.
• Bitmap and non-zero channel index buffer: It consists of

three buffers and a channel counter. When the OR_BIT is
1 in the PW layer, we save the corresponding input channel
number obtained from the channel counter in the buffer. This
information is useful during the computation as we perform
computation only on input channels recorded in the buffer
and skip the rest. In other layers (such as DW and CONV),
we store the bitmap bits in buffers, which are later used to
enable/disable the appropriate data gating registers in PEs
(c.f Fig. 9-11).

The IAs are stored in a compressed format in the cache using
the five blocks discussed above. The bitmap bits and the input
channel numbers saved in buffers aid in power saving through
data-gating and latency reduction through cycle skipping.

III. QUANTIZATION OPERATION IN POST-PROCESSING
MODULE

The quantization scheme is derived from [1] and can be
represented by the following equation:

Q(x) = round(
α× x

2β
) (6)

Where Q is the quantized representation of input x, α and
β represent dyadic scaling parameters computed offline.

The rounding operation can be mimicked in a hardware-
friendly way as follows:

round(
α× x

2β
) ≈ floor

(
α× (x) + 2β−1

2β

)
(7)

Dyadic scaling ensures that α and β are fixed point integers;
hence, the multiplication and division operations in Eqn. 7
can be efficiently implemented using an integer (fixed point)
multiplier and a shifter. From offline accuracy analysis, scales
α and β are set to 8b. Rounding operation can be visualized
as adding 0.5, which is 1

21 to the ReLU activated output. This
can be thought of adding 1 left shifted by β − 1 times to the
ReLU activated outputs, and then right shifting it β times. Post
rounding, the result is clamped within the 8b range ( -128 to
+127 for 8b signed and 0 to 255 for 8b unsigned). In addition,
if the ReLU output is zero, the downstream computations are
disabled by data-gating registers to improve energy efficiency.

IV. INTRA-LAYER PIPELINING

Maintaining high MAC utilization is crucial for sustaining
low latency and high throughput. This can be accomplished
by pipelining the operations of a certain layer, as shown in Fig
4. Ld mnemonic denotes the memory access from the GLB-
MEM; PW mnemonic indicates the point-wise operation
of an IA tile with a W tile in the PE array; Rd denotes
transferring the contents of RF from PE to PPM after the final
accumulation, PP denotes post-processing, and Wb represents
the final writeback of OA after ReLU and quantization inside
the PPM, to the GLB-MEM. The IA and W can be loaded
into the cache concurrently since there are separate activation
and parameter memory banks. After the data tile is loaded into
the cache, the PE array starts the MAC computation, and the
final accumulated output is sent to the PPM. The data fetch
from the PE RF, PPM operation, and final output writeback is



iv

*not to scale
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Fig. 4: PW layer timing diagram. Ld(GM→CB) denotes memory transfer from the GLB-MEM to cache, Ld(GM→PPB) denotes
memory transfer from the GLB-MEM to the post-processing module buffer, PWPE denotes the point-wise layer computation
inside the PE array, Rd(RF→PPM) represents moving Psum from RF inside PE to the post-processing module, PPPPM

denotes the post-processing operation, and Wb(PPM→GM) denotes writeback of the final quantized output to the GLB-
MEM. Computation and memory transfers are overlapped to minimize delay and improve MAC utilization. ∆ represents
post-processing parameters bias (b), α, and β.

pipelined. Furthermore, the Ld operation of the next IA and/or
W tiles overlaps with the PW computation of the previous tile
to amortize the GLB-MEM access latency. Since activation
load (next tile) and store (last tile) can happen simultaneously,
the activation bank is a dual address ported memory. Here we
show the timing diagram of the PW layer as it is the most
computationally intensive layer. Other layers in the network,
such as DW and CONV, employ the same pipelining principle.
The overall MAC utilization across the PW layers is 86% for
the MobileNetV1† model.

V. HARDWARE-AWARE BALANCED WEIGHT PRUNING

We propose a hardware-aware balanced weight pruning
technique to reduce memory storage and access and improve
energy efficiency and throughput for the PW layer. The prun-
ing is done during the training stage in an iterative manner to
have minimum accuracy degradation [2]. Initially, the weights
are divided into tiles of size M × n as shown in Fig. 5(a),
and for ease of explanation, we have considered n = 4. A
fixed number of weights are pruned in each tile row based
on the magnitude, leading to structured sparsity, which can
be efficiently exploited in our hardware. We employ the CSR
scheme with modifications to store W in compressed form.
The CSR scheme uses a set of non-zero values, bounds/row
pointer, and index/column pointer to represent compressed
information. The bounds/row pointer determines the number
of non-zero elements present in a row of the sparse matrix,
and the index provides the column index of the non-zero

value. In our pruning scheme, since all the rows in a sparse
matrix tile have the same number of non-zero elements, we
don’t have to store bounds explicitly. It further eliminates the
PE workload imbalance problem, and the start location of a
particular tile in memory can be easily identified. The index
in our implementation provides a non-zero column index for a
specific tile and not the entire sparse matrix requiring log2(n)
bits instead of log2(N) in the conventional CSR approach.
In our implementation, n is 16, requiring a 4b index, and the
values of the weights are quantized to 8b. Thus, each non-zero
weight element is represented by a 12b value-index pair.

The balanced pruning methodology ensures uniform
zero/non-zero weight distribution across the weight tiles,
thereby eliminating the workload imbalance problem. Without
the balanced pruning strategy, the non-zero weights would
be non-uniformly distributed across different weight tiles
processed by different PEs resulting in workload imbalance,
and the overall performance is limited by the PE with the
heaviest workload. The PEs with low non-zero weight tile
distribution completes their execution faster and has to be
stalled for the slowest one (the PE with high non-zero weight
tile distribution).

Fig. 5(b) shows the balanced weight pruning strategy em-
ployed in RAMAN with n = 16 for different pruning ratios.
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VI. TOP-LEVEL CONTROLLER IMPLEMENTATION

The top-level controller employs a master-slave hierarchy
to implement a layer execution. The slave controller carries
out instruction execution, whereas the master controller is in

charge of fetching and decoding instructions. In the instruction
fetch stage, a layer-specific instruction scheduled for execution
is fetched from the instruction memory and sent to the top-
level master controller. In the instruction decode stage, the
fetched instruction is subsequently decoded to retrieve the
opcode and layer configuration data. Control is then handed to
the slave controller based on the opcode of a given instruction,
which activates one of the five slave controllers according
to the layer type specified by the opcode. Following the
instruction execution, the master controller is activated to
repeat the instruction fetch, decode and execute stages for the
next instruction.

A RAMAN instruction is 80 bits wide as shown in Fig.
7, with a 3b opcode, and the rest of the bits are dedicated to
storing the information related to each layer, like the zero pad,
stride, IA dimension, channel dimension, etc.

VII. GLOBAL AND CACHE MEMORY

The global and cache memory block diagrams are shown
in Fig. 8. A description of the architecture is provided in the
main document.

VIII. PROCESSING ELEMENT

The detailed architectures of the processing elements of
type-1 to type-3 are shown in Figs. 9-11. A description of
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the PE architecture is provided in the main document.

IX. DATASET AND MODEL STATISTICS

We employ RAMAN for auditory and computer vision (CV)
tasks. The dataset used for the auditory task is the Speech
Command dataset [3] for Keyword spotting (KWS) applica-
tion. The dataset is a collection of one-second utterances of
simple keywords. The DS-CNN† model shown in Table II(a)
is trained on the dataset for 12 classes as listed in Table I(a).

The dataset used for the CV task is the Visual Wake
Word (VWW) dataset [4] for person/no-person detection in
an image. The dataset is a set of 224 × 224 RGB images
which are down-sampled to 96 × 96 and converted to grey-
scaled for hardware deployment. The VWW dataset is used
to train MobileNetV1† model shown in Table II(b) with two
classes listed in Table I(b).

The model statistics of the targeted applications that gave
maximum test accuracy in software are shown in Table II. DS-
CNN† model consists of eight depth-wise Separable (DWS)
layers comprising depth-wise and point-wise layers with the
input cochleagram of size 30× 32 extracted from cascade of
asymmetric resonators [5]. The global average pooling (GAP)
layer reduces the input to the fully connected (FC) layer where
the classification takes place. It is to be noted that the DS-
CNN† model is much smaller in size as compared to the
MobileNetV1† model which has 13 DWS layers sandwiched
between CONV and FC layer. The input to the MobileNetV1†

model is a pre-processed image of size 96×96 image derived
from a 224 × 224 RGB image which is downsized and
greyscaled as part of the pre-processing. It is also worthwhile
to note that the pre-processing is being done offline and not
at run-time.

TABLE I: Classes of the target applications

KWS Classes
Class Keyword Class Keyword

0 Unknown 6 Left
1 Silence 7 Right
2 Yes 8 On
3 No 9 Off
4 Up 10 Stop
5 Down 11 Go

(a) KWS

VWW Classes
Class Status

0 Person
1 Not a person

(b) VWW

TABLE II: Model statistics implemented on RAMAN.

Layer Hin × Win × M Hout × Wout × N

CONV 30 × 32 × 1 28 × 30 × 64
DW 28 × 30 × 64 28 × 30 × 64
PW 28 × 30 × 64 28 × 30 × 64
DW 28 × 30 × 64 14 × 15 × 64
PW 14 × 15 × 64 14 × 15 × 64
DW 14 × 15 × 64 7 × 8 × 64
PW 7 × 8 × 64 7 × 8 × 64
DW 7 × 8 × 64 4 × 4 × 64
PW 4 × 4 × 64 4 × 4 × 64

DW × 4 4 × 4 × 64 4 × 4 × 64
PW × 4 4 × 4 × 64 4 × 4 × 64

GAP 4 × 4 × 64 1 × 1 × 64
FC 1 × 1 × 64 1 × 1 × 12

(a) DS-CNN†

Layer Hin × Win × M Hout × Wout × N

CONV 96 × 96 × 1 47 × 47 × 16
DW 47 × 47 × 16 47 × 47 × 16
PW 47 × 47 × 16 47 × 47 × 16
DW 47 × 47 × 16 24 × 24 × 16
PW 24 × 24 × 16 24 × 24 × 32
DW 24 × 24 × 32 24 × 24 × 32
PW 24 × 24 × 32 24 × 24 × 32
DW 24 × 24 × 32 12 × 12 × 32
PW 12 × 12 × 32 12 × 12 × 64
DW 12 × 12 × 64 12 × 12 × 64
PW 12 × 12 × 64 12 × 12 × 64
DW 12 × 12 × 64 12 × 12 × 64
PW 12 × 12 × 64 12 × 12 × 128

DW × 5 12 × 12 × 128 12 × 12 × 128
PW × 5 12 × 12 × 128 12 × 12 × 128

DW 12 × 12 × 128 6 × 6 × 128
PW 6 × 6 × 128 6 × 6 × 256
DW 6 × 6 × 256 6 × 6 × 256
PW 6 × 6× 256 6 × 6× 256
GAP 6 × 6× 256 1 × 1× 256
FC 1 × 1× 256 1 × 1× 2

(b) MobileNetV1†
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X. PERFORMANCE ANALYSIS

In this section, we analyze memory accesses throughout the
hierarchy separately as reads and writes in both DS-CNN† and
MobileNetV1† models. Also we try to analyze the reduction
of reads and writes with and without IA sparsity, with and
without parameter pruning. Additionally, we try to analyze
the effects of IA sparsity and parameter pruning on MAC
operations. To benchmark our results, we have taken 110 audio
signatures and 110 images as inputs to average the operations
(OPs) and memory accesses involved in inferring them. In our
work, a read or write to the GLB-MEM or to the cache bank
is considered to be a memory access.

TABLE III: Activation Global Memory Access in KB

DS-CNN†
Activation Global
Memory (in KB)
Read Write

Total CONV 0.96 53.76
Total DW 128.64 75.904
Total PW 75.904 75.904
Total GAP 1.024 0.064
Total FC 0.064 0.012

Total 206.592 205.644
(a) DS-CNN†

MobileNetV1†
Activation Global
Memory (in KB)
Read Write

Total CONV 9.216 35.344
Total DW 245.792 192.016
Total PW 334.864 219.664
Total GAP 9.216 0.256
Total FC 0.256 0.002

Total 599.344 447.282
(b) MobileNetV1†

DS-CNN† being a statiscally smaller model as compared to
MobileNetV1†, the activation GLB-MEM reads and writes in
Table IIIa are much lower than that shown in Table IIIb. It
can also be observed that the depth-wise separable (DWS)
layers constitute maximum activation GLB-MEM accesses
(both reads and writes) which justfies our focus on optimising
DWS layer dataflow and the hardware architecture to the
maximum extent possible.

TABLE IV: Activation Cache Access in KB

Activation Cache Access (in KB)
Read Write

Without
IA Sparsity

With
IA Sparsity

Without
IA Sparsity

With
IA Sparsity

359.232 219.099 205.568 124.355
(a) DS-CNN†

Activation Cache Access (in KB)
Read Write

Without
IA Sparsity

With
IA Sparsity

Without
IA Sparsity

With
IA Sparsity

978.848 538.343 590.128 323.36
(b) MobileNetV1†

The data shown in Table IV are the total cache accesses
made for activations. The writes are ≈ 40% less than reads
which indicates extensive reuse of activations in the cache
before being evicted out. ≈ 40 − 45% reduction in accesses
is seen when IA sparsity is exploited using ASE with RAP
threshold set to zero, out of which the majority of the accesses
happen in DWS layers itself.

TABLE V: Activation Cache accesses breakdown

Layer
Activations Cache Access in KB

With IA sparsity Without IA sparsity
Read Write Read Write

Total CONV 0.479 0.171 2.688 0.96
Total DW 171.029 76.656 280.512 128.64
Total PW 47.463 47.463 75.904 75.904
Total GAP 0 0 0 0
Total FC 0.128 0.064 0.128 0.064

Total 219.099 124.355 359.232 205.568
(a) DS-CNN†

Layer
Activations Cache Access in KB

With IA sparsity Without IA sparsity
Read Write Read Write

Total CONV 9.852 6.708 13.536 9.216
Total DW 355.661 143.822 630.192 245.792
Total PW 172.574 172.574 334.864 334.864
Total GAP 0 0 0 0
Total FC 0.256 0.256 0.256 0.256

Total 538.343 323.36 978.848 590.128
(b) MobileNetV1†

Table V shows the breakdown of Table IV. Majority of
the accesses are evidently done during the execution of DWS
layers.

TABLE VI: Number of Operations in Million

#Operations (in Million)
Weight Sparsity in

PW layer
Without

IA sparsity
With

IA sparsity
0% 12.052 7.099

25% 9.623 5.581
50% 7.194 4.062
75% 4.765 2.543

(a) DS-CNN†

#Operations (in Million)
Weight Sparsity in

PW layer
Without

IA sparsity
With

IA sparsity
0% 41.802 21.055
25% 32.378 16.385
50% 22.953 11.716
75% 13.528 7.046

(b) MobileNetV1†

Table VI shows the number of operations for both cases,
with and without input sparsity. The baseline again would
be a model without exploiting input and weight sparsity. We
find a significant reduction of operations with IA sparsity
when coupled with parameter pruning. We find that operations
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Fig. 12: Weight Cache Access in KB

reduce by ≈ 54% when the parameters are 25% pruned (12.05
Mil. vs 5.58 Mil.) whereas it further reduces by another ≈ 55%
when parameters are 75% pruned (5.58 Mil. vs 2.54 Mil.). It
should be noted that even without IA sparsity, just parameter
pruning also gives considerable reductions in operations. For
example, operations reduce by 21% when compared to a
25% pruned model (9.62 Mil. vs 12.05 Mil.) and 61% when
compared to a 75% pruned model (4.76 Mil. vs 12.05 Mil.).
PW layers dominate other layers regarding the number of
operations and contribute to nearly 90%

Fig. 12 depicts the cache accesses (reads and writes) in-
volved in the parameter space. According to the dataflow
described in the main document, cache bank is used only to
store PW layer parameters. Hence, the plot are accesses related
to PW layers in the model. The reads for any given pruning
percentage is much higher than writes, which implies that there
is considerable reuse of weights present in the cache. Also, the
reads and writes reduce as the pruning percentage increases.

Fig. 13 depicts the effect of ASE on the memory accesses in
parameter reads. The parameters are not read from the cache
when all the elements of a column are zero (for instance

columns 2 and 3 in Fig. 14). This reduces the parameter
reads to a great extent leading to considerable latency and
power saving. This plot shows the effectiveness of ASE in not
only exploiting input activation sparsity but also reducing the
parameter reads to a great extent.

The memory and power breakdown of the RAMAN archi-
tecture is shown in Fig.15 and Fig.16 considering 75% weight
pruning in the PW layers. The parameter memory (54% util.)
dominates the activations (26% util.) for the MobileNetV1†

model, whereas the activation memory (46% util.) dominates
the parameters (25% util.) for the DS-CNN† model. The cache
and Instruction Memory+ASE buffers account for 16 − 23%
and 4−6%, respectively. The power breakdown is as follows;
logic+clock account for 80%, and the memory+DSP account
for the remaining 20%.

A. Model-wise Analysis:

The number of operations and memory accesses of DS-
CNN† and MobileNetV1† vary significantly based on the
sparsity of the given input. Also because the model statistics
(as shown in Table II) vary significantly between both the
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Fig. 14: ASE illustration for the PW layer.

models, it is important to analyze RAMAN’s performance for
both the models separately.

1) DS-CNN†: Table VII summarizes the performance of
RAMAN for the DS-CNN† model, which consists of eight

DWS layers with 50% weight pruning in the PW layers. It
is observed that the pre-processed audio input (cochleagram)
fed to the CONV layer is highly sparse (82.2%). The activa-
tion cache accesses total just 0.651KB (0.479KB reads and
0.171KB writes), as the cache memory doesn’t store zeros.
These accesses translate to 0.172M OPs which is ≈80% lower
when IA Sparsity is not exploited. CONV employs the DW
dataflow and doesn’t require parameter cache accesses; thus,
the parameters are directly accessed from the GLB-MEM.

DWS layers follow the CONV layer. From Table VII, it is
evident that activation cache access is 247.684 KB, which is
≈21% higher than the activation GLB-MEM accesses. With
an average IA sparsity of 22.7%, there is a reduction of ≈38%
(0.849 Mil.) in the operations when IA Sparsity is exploited.

The PW layer employs the RD dataflow, as discussed in
the main document. The parameter cache access (888.044)
dominates the GLB-MEM accesses (27.648KB), leading to
effective temporal cache reuse of about 32x. There is a 3x
reduction in operations with IA Sparsity (37.5%) and 50%
weight pruning.

The global average pooling (GAP) layer reduces each input
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TABLE VII: Performance Breakdown of DS-CNN† model with 8 DWS layers. The RAP threshold was set to zero and the
parameter pruning in the PW layers was set to 50%

Layer Activation GLB-MEM
accesses (KB)

Parameter GLB-MEM
accesses (KB)

Activation Cache
accesses (KB)

Parameter Cache
accesses (KB)

OPs
(in Mil.)

Num. of
Active PEs

Avg. IA Sparsity
(%)

CONV 54.72 0.96 0.651 0 0.172 11 (91.67%) 82.2
DW 204.544 7.68 247.684 0 0.849 11 (91.67%) 22.7
PW 151.808 27.648 94.927 888.044 3.038 12 (100%) 37.5

Pooling 1.088 0 0 0 0.001 - 72.5
FC 0.076 1.056 0.192 0 0.002 12 (100%) 66.8

TOTAL 412.236 37.344 343.454 888.044 4.062 - 28.6

TABLE VIII: Performance Breakdown of MobileNetV1† model which has 13 DWS layers. The RAP threshold was set to zero
and the parameter pruning in the PW layers was set to 50%

Layer Activation GLB-MEM
accesses (KB)

Parameter GLB-MEM
accesses (KB)

Activation Cache
accesses (KB)

Parameter Cache
accesses (KB)

OPs
(in Mil.)

Num. of
Active PEs

Avg. IA Sparsity
(%)

CONV 44.56 0.240 16.561 0 0.463 11 (91.67%) 27.2
DW 437.808 18.720 499.483 0 1.904 11 (91.67%) 35.1
PW 554.528 157.536 345.147 3620.764 9.339 12 (100%) 44.9

Pooling 9.472 0 0 0 0.009 - 59.8
FC 0.258 0.8 0.512 0 0.001 12 (100%) 7.1

TOTAL 1046.626 177.296 861.704 3620.764 11.716 - 39.5

channel to a single value. In RAMAN, during the execution of
the GAP layer, the entire PE array is gated to reduce dynamic
power consumption, and the entire execution takes place in
the PPM. GAP constitutes a tiny percentage of operations and
memory accesses.

The FC layer leverages IA reuse; hence, we observe that the
activation cache accesses are ≈2.5× more than the activation
GLB-MEM accesses. The parameters are directly accessed
from the GLB-MEM, bypassing the cache due to no reuse.

A further ≈10% reduction in IA cache access and ≈13%
reduction parameter cache reads were observed with run-time
activation pruning with the threshold value of 30.

2) MobileNetV1†: MobileNetV1† model has 13 DWS lay-
ers which account for higher memory access and operations
as indicated by Table VIII in comparison with the DS-CNN†

model. The estimates shown are for 50% weight pruning and
leveraging IA sparsity. The DW and the PW layers dominate
the GLB-MEM activation and parameter accesses, and the
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same trend is observed in the cache access. The weights are
stored in the cache only in the PW dataflow leading to a
temporal reuse of about 23x. Run-time activation pruning with
the threshold value of 40 led to an additional ≈ 8% decrease
in IA cache access and ≈ 21% reduction in parameter cache
reads.
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