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Abstract

There is growing interest in developing integrated room temperature control electronics for the control

and measurement of superconducting devices for quantum computing applications. With the availability

of faster DACs, it has become possible to generate microwave signals with amplitude and phase controls

directly without requiring any analog mixer. In this report, we use the evaluation kit ZCU111 to generate

vector microwave pulses using the second-Nyquist zone technique. We characterize the performance

of the signal generation and measure amplitude variation across second Nyquist zone, single-sideband

phase noise, and spurious-free dynamic range. We further perform various time-domain measurements

to characterize a superconducting transmon qubit and benchmark our results against traditionally used

analog mixer setups.
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I. INTRODUCTION

Quantum processors utilize the properties of quantum parallelism and quantum interference in

solving certain computational problems much faster than classical computers [1]. Qubits which

are the building blocks of quantum processors have many realizations such as trapped ions [2],

semiconducting quantum dots [3], nitrogen-vacancy centers [4], and superconducting qubits [5, 6]

etc. Among several such realizations, superconducting qubits are being aggressively pursued for

scalable quantum computing platform [7, 8]. The superconducting qubits are essentially nonlinear

oscillators, which utilize the nonlinearity of the Josephson inductance to form an effective quantum

two-level system [9]. These systems need microwave pulses with gigahertz (GHz) frequency and

latency in nanoseconds for control and readout, which are realized by the high speed electronics

at room temperature [6, 10, 11].

Traditionally for superconducting qubits, commercially available arbitrary waveform genera-

tors (AWG) based on Radio Frequency-Digital to Analog Converters (RF-DAC) with ¡ 1 GHz

of analog bandwidth have been used. These are usually designed for general purpose tests and

measurements. RF qubit control pulses, which are typically 4-6 GHz are obtained by upconvert-

ing the AWG waveforms with analog mixers. These analog mixers come with a Local Oscillator

(LO) leakage and imperfect sideband suppression [12], and their electrical properties vary with

manufacturing tolerance and environmental effects. This demands a periodic calibration of the

mixers to suppress unwanted image frequencies which is an overhead to the experiments [12].

This invites the need for a customized engineering solution that meets the requirement of the

quantum computing community. Integration of FPGA with RF-DAC and ADC have led to sev-

eral breakthroughs such as active-reset, pulse-routing [13], faster readout [14], stabilization of

Rabi-oscillations [15], quantum error correction [16, 17]. These hardware implementations have

reached sufficient maturity and several commercial products from different vendors are also avail-

able [18–20].

The availability of RF-DACs with high sampling rates in the order of gigahertz frequencies

has gained interest in recent times. The Xilinx Zynq Ultrascale+Radio Frequency System-On-

Chip (RFSoC) [21] which is a family of devices of Field Programmable Gate Arrays (FPGA)

comes with Digital to Analog Converters (DACs) and Analog to Digital Converters (ADCs) of

very high sampling rates. It also includes up/down frequency converters using internal digital
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FIG. 1. Block Diagram for the RF Signal Generation

mixers which eliminates the need for external analog mixers. In this work, a single FPGA board

(ZCU111 by Xilinx) that is populated with the XCZU28DR device has been used to directly

generate control pulses in 4-5 GHz frequency range using the Second-Nyquist zone techniques.

Our method therefore, eliminates the requirement of any analog mixer. We first benchmark the

performance of the Continuous Wave (CW) microwave signals at room temperature by measuring

various parameters like spurious-free dynamic range (SFDR), single-sideband phase noise and

the reduction in amplitudes while generating signals in multiple Nyquist zones. To show the

applicability of our technique, we generate the control pulses required for the control of the

superconducting qubit and carry out coherence measurements of a transmon qubit.

II. RF PERFORMANCE BENCHMARKING

A. FPGA Logic for the Generation of RF Control Signals and Waveforms

This section describes the design for arbitrary waveform generation through DAC in higher

Nyquist zones. It further describes the experiments conducted to benchmark the performance
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of the continuous microwave signals through ZCU111. We use the first generation of RFSoC

device XCZU28DR for our experiments. It comes with eight high precision and low power DACs

and ADCs with maximum sampling rates of 6.554 GSPS and 4.096 GSPS, respectively. These

data converters are configurable and integrated with Programmable Logic (PL) resources of the

RFSoC through AXI interfaces. The eight DACs are clocked by primary onboard reference Phase

Locked Loop (PLL) LMK04208 and onboard RF PLL LMX2594 to generate the sample clocks

[22] of the data converters. On the ZCU111 evaluation board, two DACs and two ADCs routed

to HF baluns with –1dB Pi pad attenuators, two DACs, and two ADCs routed to LF baluns

with -3dB Pi pad attenuators, and remaining four DACs, and four ADCs routed to SMAs for use

with external custom baluns and filters, all being routed to SMAs [22]. The baluns are primarily

added to attenuate higher image frequency signals generated by DAC.

Figure 1 shows the stages involved in generating the RF control signals. The Signal Gener-

ator Block produces continuous and shaped pulse waveforms required as per the measurement

experiment. The sample values of the function are stored in a look-up table whose address is

provided by the Address Generator Block. The Controller Block provides the necessary control

signals based on the input parameters, which enables the Signal Generator Block to produce the

appropriate waveform.

The Amplitue Scaler Block in Figure 1 scales the amplitude of generated samples appropri-

ately on the fly. The amplitude scaling is realized by the multiplier and the divider units. The

RF-DAC is a 14-bit signed DAC with a 16-bit digital signal processing path, resulting in a am-

plitude resolution of VFS

213
, where VFS is the full-scale voltage. An external 10 MHz clock is fed to

LMK04208 to synchronize the timebase of the FPGA board with other instruments. The Data

Converter Block consists of a First In First Out (FIFO), an interpolation filter, a mixer, and a

DAC as shown in Figure 1. The scaled sample values from the Amplitude Scaler Block are fed

into AXI Stream (AXIS) FIFO of the corresponding DAC channel. At higher Sampling rates of

Data Converters, the data streaming clock of the DAC cannot be pushed in the orders of their

sampling rates. So a digital upsampling is necessary. This function on the DAC side is realized

by the Interpolation Filters. The interpolation rate can be chosen among 1x, 2x, 4x, and 8x. A

48-bit Numerically Controlled Oscillator (NCO) is included with the IQ-mixer, which is used to

upconvert the baseband signal to an RF range whose frequency can be changed on the fly. This

48-bit is a signed integer representation of frequencies in the range from −FS

2
to FS

2
, resulting in
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a frequency resolution of FS

2(247−1) , where FS is the sampling rate of Data Converter. We encode

the frequencies in the range −FS

2
to FS

2
and to generate a frequency above FS

2
we find its image

frequency in the range 0 to FS

2
.

The major advantage of this approach is that RF signal is generated using NCO and a digital

IQ-mixer, therefore, it allows a full vector control of amplitude and phase. Since the mixing takes

places in digital-domain, such signals are free from local oscillator (LO) leakages as compared to

the single-sideband signals generated using analog-IQ mixers requiring periodic calibration. For

the time-domain applications, the synchronization between the control signals from the board

and qubit-readout setup, a trigger signal is generated through another DAC channel. The delay

between the end of the gaussian pulses and the start of the trigger is also configurable. It is

important to mention here that ZCU111 comes with 128 numbers of GPIO pins which in principle

can be used for synchronization and hand-shaking with other instruments.

For the performance benchmarking and time-domain applications, we require specific param-

eters of the signals to be changed on the fly. These parameters could be the number of shaped-

pulses, their repetition-rate, trigger delay, the delay between two shaped-pulses, frequency of

NCO, pulse generation mode, looping, multiplication, and division factors. This is realized by

using a Virtual Input Output (VIO), a Xilinx IP, which allows changing the parameters on the

fly. The mode bits specified in Figure 1 allow generating pulses that suit different experiments.

The pulsegen parameter allows choosing between playing shaped pulses or continuous waveforms.

The looping parameter helps to run an experiment in a loop fashion which helps to automate the

experiment.

B. Multi-Nyquist Zone Operation

According to Nyquist criteria, the sampling rate limits the frequency that can be faithfully

reconstructed to be less than half the sampling rate. However, in practice, when a signal is

sampled, its images appear at higher frequencies. Each Band of the spectrum with width FS

2
is

termed as Nyquist Zone (NZ). For example, the range from DC to FS

2
is termed as first-Nyquist

Zone, FS

2
to FS is called second-Nyquist Zone and so on [23]. The images above the first-Nyquist

zone can be utilized according to the need. The output voltage of DAC can be represented [24]
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FIG. 2. Upconversion scheme on RFSoC using the on-chip IQ mixer and a numerically controlled

oscillator. Using the maximum sampling rate FS = 6.554 GHz, and mode of operation of DAC, the

signal/image can be pushed in the second Nyquist zone which can can be conditioned using a Mini-

circuit VBFZ-3590-S+(15542) bandpass filter.

as,

v (t) =

[
x (t)

∞∑
k=−∞

δ (t− kT )

]
∗ r (t) , (1)

where x (t) is the desired waveform whose samples are being generated, r(t) is the reconstruction

waveform, and T = 1
FS

. Taking Fourier transform on both sides of the above equation, we get

V (ω) =

[
X (ω) ∗

∞∑
n=−∞

δ (ωT − 2πn)

]
R (ω) , (2)

where V (ω), X (ω) and R (ω) represent the Fourier transform of v (t), x (t) and r (t), respectively.

From equation 1 and 2, it becomes evident that the sampled signal is passed through a system

having transfer function R (ω) and when a signal is sampled we get signal copies in higher fre-

quency ranges. Therefore, the output signal strength of the signal copies in different frequencies

range gets affected according to the response of R (ω).

The RFSoC supports two modes of operation for DAC: Normal mode or Non-Return-to-Zero

(NRZ) mode and Mix mode or Return-to-Complement (RTC) mode which determines R (ω). In

the NRZ mode of operation the DAC uses a fixed level reconstruction waveform during one clock

cycle. It has high output power in the first Nyquist zone, but low output power in the second

Nyquist and beyond. RTC mode or the mixed mode, it outputs the sample for the first half of the

clock period and then inverts the sample for the second half of the clock period. The resulting

frequency response shows high power in the second Nyquist zone and attenuation in the first

Nyquist zone. The output power goes to zero at DC, and 2FS. This mode provides highest power

for the second Nyquist zone applications. Mathematically, the reconstruction waveforms can be
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written as,

R (ω) =

Te
−iωT/2 sinc

(
ωT
2

)
NRZ mode

Tie−iωT/2 sinc
(
ωT
4

)
sin
(
ωT
4

)
RTC mode

The maximum sampling rate of DACs in RFSoC is 6.554 GSPS. Since the frequencies necessary

for the control side of qubit are typically in the range of 4-6 GHz, the desired RF band for signal

synthesis fall in the second Nyquist zone. It can be accessed by operating in mix mode while

maintaining highest power. To suppress the images in other Nyquist zones and signal conditioning,

we use standard coaxial bandpass filters. A schematic of the flow and different Nyquist zones are

shown in Figure 2.

C. Performance Benchmarking

To measure the power dependency in NRZ and RTC modes, the DAC output response is being

characterized by enabling the NCO whose frequency is changed on the fly and the corresponding

magnitude is recorded. To compensate for the loss in magnitude, an inverse sinc filter is applied

in both modes of operation. The recorded DAC output response is shown in Figure 3(a). The

DAC output response in NRZ mode follows a sinc function. It is evident from the Figure 3(a) that

the signal power is maximum in the second and third Nyquist zone when operating in the RTC

mode. Another important benchmarking metric for continuous mode of operation is the single-

sideband phase noise. A frequency tone (carrier) is generated, and at various offset frequencies

from the carrier, the power is measured in a specified bandwidth of 1 Hz. We use a signal

analyzer (Rohde and Schwartz FSV-13) to perform the phase noise measurements. Figure 3(b)

shows the measurement of SSB phase noise plotted for different offset frequencies around the

carrier frequency of 4.5 GHz generated from the XCZU28DR device. These are comparable to

the phase noise performance of standard test and measurements RF Signal generators [25–28].

While generation of signal using multi-zome Nyquist technique expands the scope of frequency

domain capabilities of a DAC, the images generated in other zones need to be carefully suppressed

to achieve a practically useful spurious-free dynamic range (SFDR) [29]. Figure 3(c) shows the

various spurs for a carrier tone of 4.5 GHz while using a standard bandpass-filter minicircuit

VBFZ-3590-S+(15542). With this general purpose filter, we achieve a SFDR of nearly 45 dB.
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TABLE I. Spurious free dynamic range obtained while operating in the second Nyquist zone in RTC

mode and using minicircuits VBFZ-3590-S+(15542) band pass filter for signal conditioning

Frequency (GHz) SFDR (dBc)

4.1 38.6

4.2 35.4

4.3 39.4

4.4 38.1

4.5 45.0

Our focus in this study has been on the generation of control signals for the superconducting

qubits in the frequency range of 4-4.5 GHz. In this range, the SFDR for XCZU28DR device is

summarized in Table I. It is important to mention here that this value is currently limited by

the choice of the filter, and can be further improved by using tunable cavity or switchable filter

banks [30, 31].

III. COHERENCE MEASUREMENTS OF A SUPERCONDUCTING QUBIT

To benchmark the performance of our technique for the direct generation of control signal

pulses, we use a superconducting transmon qubit coupled to a 3D waveguide copper cavity. A

fixed-frequency transmon qubit was fabricated on an intrinsic silicon wafer using standard lithog-

raphy processes. The whole qubit-cavity setup was then mounted to the base flange of a dilution

refrigerator with various attenuators and filters on the inputs microwave lines. A schematic of

the full measurement setup is shown in Fig. 4. By carrying out cavity-qubit spectroscopy, we find

the cavity frequency ωc/2π = 5.995 GHz, qubit frequency ωq/2π = 4.2 GHz, cavity linewidth of

1.7 MHz, qubit-cavity coupling g/2π = 44 MHz, and a qubit anharmonicity of 300 MHz [32].

To demonstrate the applicability of the directly synthesized control pulses, we carry out time-

domain coherence measurements of the superconducting qubit. Generally, these experiments are

done in two steps. The first step involves amplitude calibration of Xπ pulse which corresponds to

a 180◦ rotation of the qubit state about the X-axis. It involves measuring the excited state qubit

population while varying the amplitude of the Gaussian pulse resonant with the qubit frequency,
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mounted on the 4K stage and then the cavity quadratures were measured directly using the ZI-UHF
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a measurement colloquially known as power-Rabi measurement. For these measurements, we use

260 ns long Gaussian pulses with a standard deviation of 65 ns. As the qubit frequency and hence

the control signal frequency falls in the second-Nyquist zone, we use a wide-band Pasternack (PE

15A1002) amplifier to boost the signal amplitude to overcome the attenuation.

We use the UHF-AWG from Zurich Instruments to determine the in-phase and quadrature

components of the readout pulse and the subsequent qubit state determination. It is important

to mention here that in principle, the fast ADC channels available on ZCU111 can be used for

qubit readout and the entire control and readout part can be done on the same board. To address

the issue the cross-platform triggering, we generate a trigger from ZCU111 analog output channel

and used it to arm the sequencer on UHF-AWG. This straight-forward handshaking allows us to

correct any trigger latency by advancing the trigger generation on ZCU111. Moreover, it allows

defining simple ”loops” on ZCU111 so that the entire experiment can be controlled from the

board.

To check the coherent oscillation between the qubit ground state and the first excited state,

we carry out Rabi oscillation measurement in time domain. The implement this by inserting a

rectangular pulse with variable number of samples, at the center of the Xπ gaussian pulse. The

duration of qubit control pulse can be adjusted by adjusting the number of sample points in the

rectangular pulse. The top part of Fig. 5(a) panel shows the pulse sequence. Any trigger latency

between ZCU11 and the readout setup (UHF) is adjusted by adjusting the trigger delay. The

bottom panel shows the coherent time oscillations as the duration of control pulse is increased.

After carrying out this measurement, it is straightforward to carry out energy relaxation rate

measurement. The setup is same as the Rabi oscillation measurement setup with a minor change

in the pulse sequence. Here we first send a calibrated Xπ pulse and then wait for time t, before

performing a readout as shown in Fig. 5(b). Due to on-the-fly configuration of the delay time, the

entire measurement can be controlled by ZCU111 unit. For a given wait time, we generate 50,000

Xπ pulses at a repetition rate of 5 kHz and determine the excited state population. Fig. 5(b)

shows the results from T1 measurements. The results from the T1 experiment along with the fit,

yielding a T1 = 30.5 µs.

Next, we carry out the Ramsey experiment, a measurement of dephasing rate. The protocol

requires the generation of two Xπ/2 pulses with a variable time-delay between them, and subse-

quently the qubit measurement. A schematic of the pulse sequence and result from the Ramsey

11



0 25 50 75 100

0.00

0.25

0.50

0.75

1.00
T1 = 30.5 μs

(b)

P e

Time (μs)

25 30 35
T1 (μs)

0.00

0.05

0.10

0.15

0.20

N
or

m
al

is
ed

 c
ou

nt
s

(d)

0 2 4

0.00

0.25

0.50

0.75

1.00

(c)

P e

Time (μs)

T2
R = 6.25 μs

500 100 150
Time (ns)

0.00

0.25

0.50

0.75

1.00

P e
(a)

control pulse

trig. out

trigger delay

Xπ

trig. out

trigger delay

trig. out

Xπ/2 Xπ/2

delay

FIG. 5. Time-domain control of a transmon qubit using ZCU111. (a) Rabi oscillations between the

qubit’s ground |0〉 and first excited state |1〉 as a the duration of control pulse is varied. (b) Measurement

of the energy relaxation time T1. The blue line indicates an exponential fit yielding T1 = 30.5 µs. (c)

Measurement of Ramsey dephasing time (TR2 ). The top part of the panel shows the pulse sequence.
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fringe experiment is shown in Fig. 5(c). As the experiment can be completely controlled by the

ZCU111, the procedure remains similar to the T1 measurements. Here the trigger for readout

unit is aligned to the end of the second Xπ/2 pulse and a delay between the two Xpi/2 pulses is

varied. The results from the Ramsey fringe experiment along with the fit, yield a TR2 ≈ 6.3 µs.

It is important to point out here that since both the Xπ/2 pulses are generated by the internal

digital IQ-mixer and common NCO, a well-defined phase relation hold between the two pulses.

In addition, we would like to emphasize here that the measurements of T1 and TR2 on the same

device during the same run were also carried out using the conventional single-sideband modu-

lation scheme using a vector source and an arbitrary waveform generator. We do not find any

statistically significant difference from the results obtained using ZCU111. Given the ease of the

measurements as no periodic calibration for sideband suppression necessary, we also repeated the

T1 measurements over a period of 24 hours and record statistical variations in the T1 measure-

ments. Fig. 5(d) shows a histogram of 47 T1 measurements from the same device.

IV. CONCLUSION

To summarize, we demonstrated the generation of microwave signals using the second-Nyquist

zone technique on ZCU111. Using the standard off-the-selves components, we show that the

performance of signal generation is close to the various commercially available vector sources.

We emphasize that SFDR performance can be further improved by using a dedicated set of filter

banks rather than the standard test and measurement component used in this work. Looking

ahead, we would like to expand the number of control channels and explore the synchronization

between different pairs of DACs for two-qubit gates. The capabilities of the ADCs have not

been explored in this work and it would be a part of future exploration. With a push of open-

source python-based interfacing by research communities, and the continuous improvements in

the performance and scaling of RFSoC platform, the control, and measurements of multi-qubit

processors can be foreseen to become compact, easy to synchronize, and cost-effective.
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