
1

CMOS Circuits for Shape-Based Analog Machine
Learning

Pratik Kumar†, Ankita Nandi†, Shantanu Chakrabartty∗, Chetan Singh Thakur†

{pratikkumar, ankitanandi, csthakur}@iisc.ac.in, {shantanu}@wustl.edu
†Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, India, 560012
∗Department of Electrical and Systems Engineering, Washington University in St. Louis,USA, 63130

Abstract—While analog computing is attractive for implement-
ing machine learning (ML) processors, the paradigm requires
chip-in-the-loop training for every processor to alleviate artifacts
due to device mismatch and device non-linearity. Speeding
up chip-in-the-loop training requires re-biasing the circuits in
a manner that the analog functions remain invariant across
training and inference. In this paper, we present an analog
computational paradigm and circuits using “shape” functions
that remain invariant to transistor biasing (weak, moderate,
and strong inversion) and ambient temperature variation. We
show that a core Shape-based Analog Compute (S-AC) circuit
could be re-biased and reused to implement: (a) non-linear
functions; (b) inner-product building blocks; and (c) a mixed-
signal logarithmic memory, all of which are integral towards
designing an ML inference processor. Measured results using
a prototype fabricated in a 180nm standard CMOS process
demonstrate bias invariance and hence the resulting analog
designs can be scaled for power and speed like digital logic
circuits. We also demonstrate a regression task using these CMOS
building blocks.

Index Terms—Analog Approximate Computing, Machine
Learning, Logarithmic DAC, Analog Multiplier, ReLU, Bfloat16.

I. INTRODUCTION

ANALOG computing techniques are attractive for imple-
menting machine learning (ML) processors [1] because

the paradigm can exploit computational primitives inherent
in device physics and conservation principles to achieve very
high computational density and energy efficiency. For instance,
the compute-in-memory architectures proposed for ML pro-
cessors could use translinear principles [2] or Ohm’s law
in conjunction with Kirchoff’s current conservation law to
implement energy-efficient matrix-vector-multipliers [3] and
pattern classifiers [4]. Similarly, analog techniques could be
used to synthesize different non-linear functions using very
few transistors compared to their digital counterparts [5]. How-
ever, compared to digital implementations, analog computing
by its nature, is approximate, relying on the accuracy of the
physical models that govern the operation of the devices used
in the computation. This requires proper biasing of the devices
(to ensure sufficient dynamic range) and ensuring compliance
with environmental factors like temperature. Therefore, analog
ML processors have to use active temperature compensation

?This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Analog ML

Server

Cloud

Parameters

Training data

In
p

u
t

O
u

tp
u

t

Analog
ML

Trained
parameters

Input Output

(a)

Analog ML

Server

Cloud

Parameters

Training data

In
p

u
t

O
u

tp
u

t

Analog
ML

Trained
parameters

Input Output

(b)

(c) (d)
Fig. 1. (a) Chip-in-the-loop training of an analog ML processor; (b) Inference
using analog ML processor programmed with trained parameters, (c) An
example proto-function h(x) whose shape remains invariant within a certain
margin (shaded region) under different operating and biasing conditions,
(d) Different non-linear functions (A1 − A4), (B1 − B2) that can be
implemented by translation, rotation, addition and subtraction of the proto-
function.

techniques [6], [7] and have to employ a chip-in-the-loop train-
ing procedure to compensate and calibrate for these devices
and environmental artifacts [8].

This is illustrated in Fig. 1a, where during training the
analog processor implements an ML model (for example a
neural network) which is controlled by an external server.
The server is assumed to have sufficient resources (memory,
bandwidth and access to the data cloud) to store the training
data and to perform a search over the ML parameters. In a
typical chip-in-the-loop training procedure [9], the server pro-
grams the model parameters on the analog processor and then
evaluates the output of the processor to determine the next set
of parameters to be programmed (based on some optimization
criterion). This procedure is iterated till some convergence
criterion is reached, after which the programmed parameters
are fixed over the duration of inference and deployment (as
shown in Fig. 1b). While the chip-in-the-loop training can

ar
X

iv
:2

20
2.

05
02

2v
1

 [
cs

.E
T

]
 1

0
Fe

b
20

22

2

(a)

- 4 - 2 0 2 4

6

8

1 0 W I
 M I
 S I

(b)

- 4 - 2 0 2 4

6

8

1 0 W I
 M I
 S I

(c) (d)
Fig. 2. (a) MOS S-AC unit implementation for Eq. (2)-(3) and shape function (as in Fig. 1c) shown at various operating regimes for (b) Input x and
hyper-parameter S = 1, (c) Input x and hyper-parameter S = 4, (d) Inputs x1, x2 and hyper-parameter S = 4.

potentially compensate for any analog artifacts (mismatch and
non-linearity), the procedure is time-consuming and has to be
repeated for every analog processor. Proper initialization of
the parameters and using a reduced training set (adaptation
set) could potentially address this bottleneck [10]. However,
it is still desired that the chip-in-the-loop training procedure
be sped up significantly. Enhancing the speed requires the
circuits to operate with higher currents which requires re-
biasing the devices used in the computation. For example,
analog computing circuits that operate using the MOSFET
translinear principle require the transistors to be biased in one
single regime i.e. weak-inversion [11] or strong-inversion [12].
Any deviation from the operating regime changes the function
itself which introduces a mismatch between the training and
inference operating conditions. Furthermore, operating the
devices at a higher current leads to higher power dissipation
and an increase in on-chip temperature and change in device
characteristics.

In this paper, we present a Shape-based Analog Computing
(S-AC) paradigm where the implemented functions remain
robust to changes in biasing conditions and the operating
temperature. Therefore, similar to digital circuits, S-AC cir-
cuits can be operated at different speeds and at different
levels of power dissipation without changing the nature of the
output function. The approach for synthesizing S-AC circuits
is illustrated in Fig. 1c where we will first design a basic
proto-function whose “shape” will remain invariant (within a
prescribed error margin) to MOSFET biasing or the operating
temperature. In this regard, we extend our previous work in
the area of bias-scalable analog computing circuits [4] in
generating more complex proto-functions that are matched to
the physical operating principles of MOSFETs and diodes.
As shown in Fig. 1d, the basic proto-function can then be
translated, inverted, added and subtracted to obtain other non-
linear and linear approximations.

In Section II we describe the shape-based analog synthesis
approach and its relation to the most generalized form of
the MOSFET model that is valid in all regions of operation.
Then, in Section III, we present basic S-AC CMOS circuits
that will be the building blocks for any analog ML inference
processor. In Section IV we present measurement results using
prototypes fabricated in a 180nm standard CMOS process and

in Section V, we demonstrate the functionality of a simple
regression task combining the basic S-AC circuits. Finally, in
Section VI we conclude the paper with brief discussions and
a comparison of the results with other related work.

II. SHAPE-BASED ANALOG COMPUTATION

In its most general form, the drain-to-source current (Ids)
flowing through an n-type MOSFET can be expressed as the
difference between the forward and reverse currents [8] as

Ids = Is[f(Vg, Vs)− f(Vg, Vd)] (1)

where Is is the specific current and f : R × R → R is a
function that models the forward and reverse currents with
respect to the gate (Vg), drain (Vd) and source (Vs) voltages
respectively. A similar expression as (1) also holds for a p-type
MOSFET, except that the signs of the respective variables are
reversed. Without any lack of generality, our analysis in this
section will be based on the n-type MOSFET model; however,
the formulation is applicable to p-type MOSFETs as well. It
should also be noted that, as long as the source and the drain
terminals are symmetric to each other, the expression in (1)
holds irrespective of the choice of transistor models such as
EKV (Enz, Krummenacher, and Vittoz) [13], ACM (Advanced
Compact MOSFET) [14], etc. or operating regimes i.e. weak-
inversion, moderate-inversion or strong-inversion, or process
nodes viz. MOSFET, finFET, etc. The function f(·, ·) always
satisfies the following properties:

• f(0, 0) = 0 and f(·, ·) is always positive or f(·, ·) ≥ 0,
by construction.

• f(·, ·) is monotonic. For Vg1 > Vg2, f(Vg1, Vs) >
f(Vg2, Vs) and for Vs1 > Vs2, f(Vg, Vs1) < f(Vg, Vs2).

The rationale behind shape-based computing is to create proto-
functions that are only dependent on the generic properties of
f(·, ·), listed above, and which remain invariant to biasing and
operating conditions. Here we specify one method to create
such a proto-function:

Given an input vector x ∈ RS with elements xi ∈ R, i =
1, .., S, the proto-function h : RS → R is computed as a

3

solution to the equation h(x) = f(VB , 0) where the variable
VB is the solution to the following equations :

S∑
i=1

f(Vi, VB) = C (2)

f(VB , 0)− f(VB , Vi) + f(Vi, VB) = xi,∀i = 1, .., S (3)

Here, C is a hyper-parameter, and Vi are internal variables.
Without going into a detailed mathematical exposition, we can
show that h(·) satisfies

1 ≥ ∂h

∂xi
≥ 0,∀i (4)

and

lim
xi→∞

∂h

∂xi
= 1 (5)

lim
xi→−∞

∂h

∂xi
= 0 (6)

The property in (4) ensures that the proto-function h is
monotonic with respect to its variable (similar to the shape
shown in Fig. 1c). Note that the properties described by
equations (5) and (6) determines the two asymptotes of the
proto-function, irrespective of the specific form of f . The
hyper-parameter S and the vector x control the transition
between the two asymptotes and hence can be used to adjust
the non-linearity to the desired precision.

The equations (2)-(3) can be easily implemented using
CMOS circuits as shown in Fig. 2a. Here, Vi and VB are
the voltages across the ith transistor, C is a constant current
and Di, i ∈ (1, · · · , S), denotes diode elements (Schottky,
MOS diode or any other). Fig. 2b shows the example of
the proto-function obtained using the circuit in Fig. 2a for
S = 1. Similar results are plotted in Fig. 2c for S = 4. The
results are also shown for different MOSFET biasing regimes,
i.e., the Weak Inversion (WI), Moderate Inversion (MI), and
Strong Inversion (SI) biasing regimes which correspond to
different functions f in (2)-(3). The plots show that the shape
of proto-function remains invariant to the biasing condition
and is constrained within a well-defined “margin” that is
determined by S. Note that the smoothness of the shape and
the computational accuracy can be increased by increasing S,
as observed in Fig. 2b and Fig. 2c. The effect of multiple
inputs and the hyper-parameter S on the shape of the proto-
function can be visualized in Fig. 2d in different operating
regimes.

III. BASIC S-AC CIRCUITS FOR ML INFERENCE

The basic building blocks for designing an ML inference
processor are: (a) non-linear computing circuits; (b) multiply-
accumulate circuits; and (c) memory for storing the inference
parameters and for supporting a digital interface for inputs
and chip-in-the-loop training. Here we show that the basic
S-AC circuit shown in Fig. 2a can be modified/extended to
implement all the building blocks. Specifically, we implement
a combination of a compressive mixed-signal memory and

C

S AC− S AC−

0x
outI

Fig. 3. Soft ReLU implementation using S-AC.

a non-linear multiplier circuit that results in a multiply-
accumulate (MAC) operation which emulates computing using
Bfloat16 number representation [15]. Note that any approxi-
mation error introduced in this mapping can be compensated
during training itself, which is one of the main motivations
for this work.

A. ReLU Implementation with S-AC

A soft ReLU function can be implemented using a one-
dimensional proto-function shown in Fig. 2b and Fig. 2c. A
circuit implementation of soft ReLU function is shown in
Fig. 3. The basic circuit uses two S-AC units, one of which
receives an input x and the other is driven by a zero current (or
floating). The resulting function is similar to Fig. 2b where the
constant current C determines the shape of the ReLU. Note
that when the limit C → 0, the proto-function converges to
an ideal ReLU function. As described before in Section II, the
shape of the proto-function and soft ReLU can be modified
by adding more S-AC units in Fig. 3 which will result in
an output similar to Fig. 2c. Also, note that other non-linear
functions can be implemented by shift, translation, addition
and subtraction of the basic proto-function like the tanh(·)
function illustrated by C1 in Fig. 1d.

B. S-AC based Analog Multiplier

The S-AC proto-function h can be used to implement analog
multipliers based on the following Taylor series approxima-
tions

h (C + w + C + x)− h (C + w + C − x) . . .
+h (C − w + C − x)− h (C − w + C + x)

≈ 2x×
(

dh(C+w)
dw − dh(C−w)

dw

)
≈ 2x× (w+ − w−)

(7)

The constant C ensures that the input to the proto-function
is always positive. The differential combination effectively
cancels the zero-th order and second-order terms in the Taylor
series [16] and the property of h in (4), leads to (7). Note that
one of the differential arguments to the multiplier (w+ − w−)
is a non-linear map dh

dw , which based on property (4), is a
compressive map. Thus, the stored parameters need to be pre-
processed before and is presented as an input to the multiplier.
This is the basis for our compressive memory design described
in Section III-C.

4

(a)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

 S h a p e B a s e d M u l t i p l i c a t i o n
 I d e a l M u l t i p l i c a t i o n

(b)
Fig. 4. (a) MOS implementation of S-AC multiplier for hyper-parameter S = 3, (b) Comparison of four-quadrant S-AC multiplication with ideal multiplication.

(a) (b)
Fig. 5. (a) Compressive log-binary DAC implementation using S-AC, (b) Comparison plot between S-AC log-binary DAC, Bfloat16 & IEEE32 number
systems demonstrating close compliance of the corresponding log2 curves with each other.

The circuit in Fig. 4a implements the scalar multiplication
given in (7) where w ∈ R, x ∈ R and the product y ∈ R.
Fig. 4a shows S-ACm (subscript m for multiplier) unit utilized
to implement each component in (7). The inputs are first
converted into their differential forms and constant (C) is
added to the negative term to shift the operation in the first
quadrant. The output from all S-ACm units are added and
subtracted (differentially) as per (7) to obtain the desired
multiplication. Fig. 4b shows a close approximation between
the simulated output of the four-quadrant multiplier and the
output obtained from an ideal multiplier. Based on this basic
operation, multiply-accumulate operations and inner-products
can now be implemented by combining element-wise S-AC
multipliers with summing circuits based on Kirchhoff’s current
law. Other parallel analog matrix-vector-multiplier architec-
tures have been reported in literature [17], [18].

C. Compressive Memory with S-AC

One of the major challenges in implementing an analog ML
processor is the storage and updating of trained parameters.
While analog memories based on memristors, floating-gates,

and other nano-scale devices have been proposed for analog
ML processors [19]–[21], their functional response and speed
do not scale across training and inference. Therefore, in this
paper, we propose to use a DAC based memory that uses
an S-AC based analog frontend to implement a compressive
function, as required by the multiplier in (7). Here we show
that this compressive-expansive operation is equivalent to
analog computing using Bfloat16 and the IEEE-754 single-
precision (32-bit) number systems. Note that the Bfloat16
number system developed by Google Brain delivers more
accurate results at lesser hardware as compared to IEEE
754 single-precision numbers for some neural network and
is extensively used by Google cloud TPUs [15]. Consider a
function g(x) given by

g (x) = log2

(∑
i

2xi

)
. (8)

Then, it is easy to verify that g(x) satisfies the properties

1 ≥
∣∣∣∣ ∂g∂xi

∣∣∣∣ ≥ 0 (9)

5

7
3

0
 m

m

130 mm

ReLU

Lo
g-

D
A

C

Multiplier

S-
A

C
 b

as
e

d
 N

e
u

ra
l N

et
w

o
rk

(a)

zzz

1. High-Level Python

interface for all.

2.Controls test

equipment and

PYNQ Z2.

3. PYVISA and TCP

language used.

4.Synchronization

between PYNQ,

Test chip and Test

equipment.

FPGA

Test Equipment

IC Test-Bed

PC

Test Chip

(b)
Fig. 6. (a) Die micro-photograph of the chip, (b) Test measurement setup.

lim
xi→∞

∂g

∂xi
= 1 (10)

similar to that of the proto-function h (x) in (5) and (6). If x

is denoted by its binary representation as x ∼=
N∑
i=1

2ibi, then

incrementing the hyper-parameter S per bit, we have

g (x) = log2

N∑
i=1

S∑
j=1

2Cij bi = log2

NS∑
i,j:bi=1

2Cij = g (B)

(11)
where B∈ {0, 1}S × {0, 1}N is a binary input matrix and N
is the number of inputs.

It can be seen that (11) (logarithmic DAC) is a special
case of (8) and hence can be approximated using the proto-
function h (x). Fig. 5a shows the circuit implementation of
N-bit S-AC based compressive memory for S = 3. Switches
connected at b1, b2,...., bN are implemented using transmission
gate (TG) switches. Here, [b1,, bN−1, bN] represent an N-
bit binary number to be converted into its analog equivalent
and [C1,1, C1,2, C1,3, ..., CN,3] are the offsets when S = 3.
The proposed S-AC based DAC converts the digital input
into a compressive analog output. Note that this compressive
output is implicitly expanded in (7) for multiplication. Fig. 5b
compares the log2 characteristics of the Brain float (Bfloat16)
and the IEEE-754 single-precision (32-bit) number systems for
16-bit numbers normalized between 0 to 1 and the response
obtained using the S-AC DAC for hyper-parameter S = 4.
The results show compliance between the different logarithmic
number representations.

IV. MEASUREMENT RESULTS

The S-AC building blocks have been prototyped in a stan-
dard CMOS 180nm process technology and Fig. 6a shows
the die microphotograph of the chip. The functionality of the
circuit modules has been verified using the test measurement
setup shown in Fig. 6b. The test chip was mounted on a
custom IC test board and the test vectors were generated using
PYNQ-Z2 FPGA board which used a python-based interface
to control the digital inputs and outputs. High precision analog
test equipment were directly interfaced with the test chip and
were controlled by PYNQ-Z2 FPGA board.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6 M e a s u r e d (S I)

 M e a s u r e d (M I)
 M e a s u r e d (W I)
 I d e a l

No
rm

ali
se

d O
utp

ut

N o r m a l i s e d I n p u t C u r r e n t
Fig. 7. Measurement result of S-AC ReLU implementation shown in Fig. 3
for C = 0.5 demonstrating shape invariance across operating regions.

A. S-AC ReLU Measured Results

Fig. 7 shows the measured results of S-AC based ReLU
implementation (Fig. 3) and its comparison with the ideal. It
can be observed that the obtained normalized output current
curve follows the desired non-linear shape and matches with
the ideal. Furthermore, the non-linear shape remains invariant
in weak, moderate and strong inversion regimes as desired.

B. S-AC Multiplier Measured Results

Fig. 8 shows the measured result of the implemented S-AC
multiplier circuit for different values of hyper-parameter S and
at different operating conditions. Fig. 8a shows the comparison
plot of a four-quadrant multiplier for hyper-parameter S = 1
and S = 3. It can be noted that with the increase in hyper-
parameter S, the multiplier accuracy increases and becomes
much closer to the ideal. Fig. 8b is computed for S = 3, and
shows the four-quadrant multiplication at different operating
regimes in close compliance with each other. The results of
Fig. 8a and Fig. 8b have been computed for x ∈ (−1, 1) and
for w = [−0.5, 0.5]. Fig. 8c shows the multiplication curve
for x ∈ (−2, 2) and for different values of w.

C. S-AC Compressive Memory Measured Result

Fig. 9 shows the measured result of 8-bit S-AC based
DAC as a function of equivalent decimal input varying from
0 to 255 at different operating regimes. It can be seen
that the result closely approximates the desired ideal shape
and the output shape is invariant across operating regimes.
With increase in constant current C, along with the offsets
[C1,1, C1,2, C1,3, ..., CN,3] for S = 3, the S-AC DAC op-
eration moves from WI to SI resulting in increasing power
consumption but simultaneously reducing settling time and in
turn improving throughput and speed. However, the optimum
trade-off between energy and throughput can be obtained in
the MI region of operation.

D. Energy and Error Analysis

Table I shows the energy per operation of basic operations
mapped in the shape-based analog computation. It can be seen
that as the circuit operating regimes move from WI to SI,

6

- 2 - 1 0 1 2
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5 M e a s u r e d R e s u l t f o r S = 1

 M e a s u r e d R e s u l t f o r S = 3
No

rm
ali

se
d O

utp
ut

N o r m a l i s e d I n p u t C u r r e n t
(a)

- 2 - 1 0 1 2
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5

 M e a s u r e d R e s u l t (W I)
 M e a s u r e d R e s u l t (M I)
 M e a s u r e d R e s u l t (S I)

No
rm

ali
se

d O
utp

ut

N o r m a l i s e d I n p u t C u r r e n t
(b)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0

No
rm

ali
se

d O
utp

ut

N o r m a l i s e d I n p u t C u r r e n t
(c)

Fig. 8. Measurement result (normalized) of four-quadrant S-AC multiplication shown in Fig. 4a for (a) varying accuracies at different hyper-parameter values
i.e. S = 1 and S = 3 for w= [−0.5, 0.5], (b) close compliance between multiplier curves at different operating regimes for S = 3 and, (c) multiplier curves
for w = [−1,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 1] at S = 3.

Fig. 9. Measurement result of 8-bit compressive DAC shown in Fig. 5a.

the energy per operation increases while an optimal balance
between power and speed is always obtained in MI region.

The most significant errors introduced in the operation
of S-AC circuits are represented by mismatches, noise and
power-supply variations. As a result of these undesired effects,
the functionality of the circuits can be severely affected by
additive errors. In S-AC circuits, the margin between the
shapes obtained in the SI and WI regimes takes into account all
the variations due to second-order effects. This crucial feature
allows the S-AC circuits to preserve the inherent shape of the
implemented function.

E. Performance analysis

Temperature variation: We compare the effect of nominal
temperature variation on S-AC units. Fig. 10 shows the mea-

TABLE I
ENERGY/OPERATION @VDD=1.1 V

Operation Energy/Operation (pJ)
(SI) (MI) (WI)

Multiplication 5.23 4.01 0.57
Division 5.23 4.01 0.57
Dynamic

ReLU 10.46 8.02 1.13

sured characteristic curves of S-AC based ReLU, Multiplier
and DAC at different temperature points respectively. One can
observe that even though there is a slight variation that can be
attributed to the current mirrors in the desired curves but the
overall characteristic shape is preserved.

Power & Task-Energy Efficiency: Fig. 11a shows a com-
parison plot between measured and simulated power of S-AC
based unit when the operating current is varied such that circuit
operations moves from WI to SI regime. It can be observed
that the power consumption increases when circuit operation
shifts from WI to SI regime.

Slew Rate: With the increase in the number of S-AC blocks,
the corresponding slew rate and bandwidth increases as the
number of inputs and the overall current available to charge the
node capacitance increases. This results in an overall reduction
in settling time and can be solely attributed to the constraints
imposed by the hyper-parameter C in (2). It can also be noted
that as value of this hyper-parameter C decreases i.e. when the
circuit operation shifts from SI to the WI regime, the settling
time increases because it takes more time for the capacitor at
the gate of the output transistor (node VB in Fig. 2a) to charge
with the limited available current.

Settling Time: This settling time (including dead time,
slew time, and recovery time) decides the maximum input
frequency at which the system can operate (assuming all the
operations to be performed are done parallel) and can be given
by (12)

fmax =
1

max (tsettling,rise, tsettling,fall) + ∆t
(12)

Here, ∆t is the margin for the unexpected error that can arise
due to circuit variations [33]. It can safely be assumed to be
between 5% of tsettling. Fig. 11b shows the measured settling
time of a S-AC based unit when the operating current is varied
such that the circuit moves from WI to SI region of operation.
It can be observed that as the operating regime moves from
WI to SI, the time required to charge the capacitance node
improves. Hence the circuit can operate at a higher speed.
Fig. 11c shows the variational performance efficiency (PE)
and system efficiency (SE) when the circuit operating regime
shifts from WI to SI. Note that PE increases with increase in
operating current while SE deteriorates.

7

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6 M e a s u r e d (2 7 · C)

 M e a s u r e d (4 5 · C)
 M e a s u r e d (6 5 · C)

N o r m a l i s e d I n p u t C u r r e n t

No
rm

ali
se

d O
utp

ut

(a)

- 2 - 1 0 1 2
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0 M e a s u r e d (2 7 · C)

 M e a s u r e d (4 5 · C)
 M e a s u r e d (6 5 · C)

N o r m a l i s e d I n p u t C u r r e n t

No
rm

ali
se

d O
utp

ut

(b) (c)
Fig. 10. Temperature measurement result for (a) S-AC based soft ReLU, (b) S-AC based four-quadrant multiplier and (c) S-AC based 8-bit log2 DAC.

1 0 0 p 1 n 1 0 n 1 0 0 n 1 µ 1 0 µ1 E - 4
0 . 0 0 1
0 . 0 1
0 . 1

1
1 0

1 0 0 M e a s u r e d
 S i m u l a t e d

Po
we

r (m
W)

(W I) (M I) (S I)
O p e r a t i n g R e g i m e s

(a)

1 0 0 p 1 n 1 0 n 1 0 0 n 1 µ 1 0 µ1 E - 1 0
1 E - 9
1 E - 8
1 E - 7
1 E - 6
1 E - 5
1 E - 4

0 . 0 0 1
0 . 0 1
0 . 1 M e a s u r e d

 S i m u l a t e d

Se

ttli
ng

 Ti
me

 (s
)

(W I) (M I) (S I)
O p e r a t i n g R e g i m e s

(b)

1 n 1 0 n 1 0 0 n 1 µ 1 0 µ
0
1
2
3
4
5

(W I) (M I) (S I)

 P o w e r E f f i c i e n c y (P E)
 S y s t e m E f f i c i e n c y (S E)

O p e r a t i n g R e g i m e s

PE
 (TO

PS
/W

)

0
5
1 0
1 5
2 0
2 5

SE
 (pJ

/M
AC

)

(c)
Fig. 11. (a) Power consumption, (b) Settling time, (c) Performance and System Efficiency of a single S-AC unit biased in different operating regimes.

V. REGRESSION RESULTS

In this section we demonstrate the functionality of the S-AC
building blocks for a simple neural network regression task.
Fig. 12a shows the neural architecture of a S-AC based 3-
layer neural network for 6 hidden nodes and its circuit imple-
mentation. Inputs are converted into differential compressive
form and passed to the hidden nodes. Here, S-AC compressive
memory units are used to store weights in the compressed log
domain. This in-memory computing architecture also reduces
the energy wasted in moving data to and from the memory.
For demonstration we use the S-AC architecture to learn a
two-dimensional non-linear function given by

Y = sin (2πx1) sin (2πx2) (13)

Fig. 12b shows that the output of the S-AC based regression
task matches closely with a software-based expected outcome.
Also, since S-AC blocks are regime-independent, the S-AC
neural network architecture was also verified to be invariant
to the biasing regime of the transistors.

VI. CONCLUSION

In this work, we proposed a novel shape-based analog ap-
proximate computing framework for designing analog machine
learning processors. Like digital designs, the S-AC framework
allows the user to trade-off precision of computation and
speed of computation with energy and area. Also, the S-AC

based analog functions have been shown to remain invariant
to biasing conditions and operating temperature. At a system
level, the overall efficiency (power and speed) can be adjusted
by adjusting a global bias current which in turn will bias
the transistors in different operating regimes. As a result,
the architecture is well suited for scalable chip-in-the-loop
training of each analog processor to compensate for fabrication
artifacts. During training, the S-AC based design can be biased
in SI without changing the overall function for faster learning
while the same system can be operated in WI for energy-
efficient inference. The system parameters stored on a digital
memory can be updated by an external digital processor.
We reported the basic building blocks (ReLU and multiply-
accumulate) of an ML processor using S-AC circuits and
we also showed the implementation of S-AC compressive
memory which mimics the computation using Bfloat16 and
IEEE 754 single-precision number systems. Table II compares
the measured performance of these basic building blocks with
similar designs reported in the literature. As a proof of concept,
we demonstrated the functionality of a 3-layer neural network
regression task using S-AC basic building blocks. Our future
works will include the demonstration of generic programmable
architecture for deep neural networks.

ACKNOWLEDGMENT

The authors would like to acknowledge the joint IISc-
WashU MoU to facilitate the collaboration between the two

8

0

(a) (b)
Fig. 12. (a) 3-layer neural network architecture and unit node implementation using S-AC DAC (Fig. 5a), S-AC ReLU (Fig. 3) and S-AC multiplier (Fig. 4a),
(b) Output of Sine Regression through the S-AC architecture presented in Fig. 12a.

TABLE II
MODULE-WISE COMPARISON OF ANALOG DESIGNS

Non-linearity
Referred Work [22] [23] [24] [25] This Work

Operating Regimes WI, SI - WI - WI, MI, SI
Design based on Current mode Current mode Voltage mode - Shape based
Technology (µm) 3 0.5 0.18 0.065 0.18

Area (µm2) 100800 264600 - 2000000 190.46
Supply (V) 2.5 - 1.3 to 1.8 - 1.1 to 1.8

Power - - 149-150µW 1.2mW 18.2nW - 89.4µW
Result Type simulated simulated measured measured measured

Analog Multiplier
Referred Work [26] [27] [28] [24] This work

Operating Regimes SI SI WI, MI, SI WI WI, MI, SI
Design based on MOSFET Sq law Pool circuit Current mode Voltage mode Shape based
Technology (µm) 2 2 0.18 0.18 0.18

Area (µm2) 10670 - 600/800 - 885.74
Supply (V) 5 5 1.2 1.1 to 1.8 0.7 to 1.8

-3dB Bandwidth 115kHz 7MHz 79.6 MHz/59.7 MHz 14kHz 15.12 MHz
Power 1mW - 60µW/75µW 234µW 546nW - 268.2µW

Result Type measured simulated simulated measured measured
Log-DAC

Referred Work [29] [30] [31] [32] This Work
Operating Regime - - - WI WI, MI, SI

Conversion
Technique

Current
attenuator

Pseudo
log amp Memristors Sub-threshold

transistor Shape based

Technology (µm) 1.2 0.18 0.18 0.18 0.18
Area (mm2) 1.5 1.5 0.0069 0.00127
Supply (V) 5 1.65 1.8 1.8 1.1 to 1.8

Implemented
Resolution (bit) 8 4 4 8 8

Power 6mW@1MHZ - 100µW@100kHz 3.11µW@5MHz 138nW - 536.4 µW @3.37MHz
Utility type log-DAC log-DAC log-DAC log-DAC log-generic-compressive-DAC
Result Type measured measured simulated measured measured

9

institutions. This work is also supported by the Department of
Science and Technology of India (SERB CRG/2021/005478,
DST/IMP/2018/000550).

REFERENCES

[1] K. Freund, “IBM Research Says Analog AI Will Be
100X More Efficient. Yes, 100X,” Sept. 23, 2021 [Online].
[Online]. Available: https://www.forbes.com/sites/karlfreund/2021/09/
23/ibm-research-says-analog-ai-will-be-100x-more-efficient-yes-100x/
?sh=61b5e23b129b

[2] C. Toumazou, F. J. Lidgey, and D. Haigh, Analogue IC design: the
current-mode approach. Presbyterian Publishing Corp, 1990, vol. 2.

[3] A. James, K. Kemp, and e. a. Robertson, Dave, “Decadal Plan
for Semiconductors,” Jan. 2021 [Online]. [Online]. Available: https:
//www.src.org/about/decadal-plan/

[4] M. Gu and S. Chakrabartty, “Synthesis of Bias-Scalable CMOS Analog
Computational Circuits Using Margin Propagation,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 59, no. 2, pp. 243–254,
2012.

[5] C. S. Thakur, R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik,
“A low power trainable neuromorphic integrated circuit that is tolerant
to device mismatch,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 63, no. 2, pp. 211–221, 2016.

[6] J.-J. Sit and R. Sarpeshkar, “A micropower logarithmic A/D with offset
and temperature compensation,” IEEE Journal of Solid-State Circuits,
vol. 39, no. 2, pp. 308–319, 2004.

[7] M. Gu and S. Chakrabartty, “Subthreshold, varactor-driven cmos
floating-gate current memory array with less than 150ppm/�k temper-
ature sensitivity,” IEEE journal of solid-state circuits, vol. 47, no. 11,
pp. 2846–2856, 2012.

[8] Y. Tsividis, The MOS Transistor. New York: Oxford University Press,
2013.

[9] G. Cauwenberghs and M. Bayoumi, Learning on silicon: Adaptive VLSI
neural systems. Springer Science & Business Media, 1999, vol. 512.

[10] J. Y. Yam and T. W. Chow, “A weight initialization method for im-
proving training speed in feedforward neural network,” Neurocomputing,
vol. 30, no. 1-4, pp. 219–232, 2000.

[11] E. Vittoz and J. Fellrath, “CMOS Analog Integrated Circuits Based on
Weak Inversion Operations,” IEEE journal of solid-state circuits, vol. 12,
no. 3, pp. 224–231, 1977.

[12] E. Seevinck and R. J. Wiegerink, “Generalized translinear circuit princi-
ple,” IEEE journal of solid-state circuits, vol. 26, no. 8, pp. 1098–1102,
1991.

[13] C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An Analytical MOS
Transistor Model Valid in All Regions of Operation and Dedicated to
Low-Voltage and Low-Current Applications,” Analog Integr. Circuits
Signal Process., vol. 8, no. 1, p. 83–114, jul 1995. [Online]. Available:
https://doi.org/10.1007/BF01239381

[14] C. Galup-Montoro, M. C. Schneider, A. I. A. Cunha, F. R. de Sousa,
H. Klimach, and O. F. Siebel, “The Advanced Compact MOSFET
(ACM) Model for Circuit Analysis and Design,” in 2007 IEEE Custom
Integrated Circuits Conference, 2007, pp. 519–526.

[15] S. Wang and P. Kanwar, “BFloat16: The secret to
high performance on Cloud TPUs,” [Online]. [Online].
Available: https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus

[16] A. R. Nair, P. K. Nath, S. Chakrabartty, and C. S. Thakur, “Multiplierless
MP-Kernel Machine For Energy-efficient Edge Devices,” arxiv, vol.
abs/2106.01958, 2021. [Online]. Available: https://arxiv.org/abs/2106.
01958

[17] F. J. Kub, K. K. Moon, I. A. Mack, and F. M. Long, “Programmable
analog vector-matrix multipliers,” IEEE Journal of Solid-State Circuits,
vol. 25, no. 1, pp. 207–214, 1990.

[18] C. R. Schlottmann and P. E. Hasler, “A highly dense, low power, pro-
grammable analog vector-matrix multiplier: The FPAA implementation,”
IEEE Journal on emerging and selected topics in circuits and systems,
vol. 1, no. 3, pp. 403–411, 2011.

[19] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella,
“Analog architectures for neural network acceleration based on non-
volatile memory,” Applied Physics Reviews, vol. 7, no. 3, p. 031301,
2020.

[20] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[21] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K. Likharev,
and D. B. Strukov, “High-performance mixed-signal neurocomputing
with nanoscale floating-gate memory cell arrays,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 10, pp. 4782–4790,
2017.

[22] S.-Y. Lin, R.-J. Huang, and T.-D. Chiueh, “A tunable Gaussian/square
function computation circuit for analog neural networks,” IEEE Transac-
tions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 45, no. 3, pp. 441–446, 1998.

[23] M. Shaterian, C. M. Twigg, and J. Azhari, “An MTL-Based Config-
urable Block for Current-Mode Nonlinear Analog Computation,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 9,
pp. 587–591, 2013.

[24] R. J. D’Angelo and S. R. Sonkusale, “A Time-Mode Translinear
Principle for Nonlinear Analog Computation,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no. 9, pp. 2187–2195,
2015.

[25] N. Guo, Y. Huang, T. Mai, S. Patil, C. Cao, M. Seok, S. Sethumadhavan,
and Y. Tsividis, “Energy-Efficient Hybrid Analog/Digital Approximate
Computation in Continuous Time,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 7, pp. 1514–1524, 2016.

[26] N. Saxena and J. Clark, “A four-quadrant CMOS analog multiplier for
analog neural networks,” IEEE Journal of Solid-State Circuits, vol. 29,
no. 6, pp. 746–749, 1994.

[27] S.-I. Liu and C.-C. Chang, “CMOS analog divider and four-quadrant
multiplier using pool circuits,” IEEE Journal of Solid-State Circuits,
vol. 30, no. 9, pp. 1025–1029, 1995.

[28] C. Popa, “Improved Accuracy Current-Mode Multiplier Circuits With
Applications in Analog Signal Processing,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 443–447,
2014.

[29] J. Guilherme and J. Franca, “A logarithmic digital-analog converter for
digital CMOS technology,” in Proceedings of APCCAS’94 - 1994 Asia
Pacific Conference on Circuits and Systems, 1994, pp. 490–493.

[30] S. Purighalla and B. Maundy, “84-dB Range Logarithmic Digital-to-
Analog Converter in CMOS 0.18- µm Technology,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 58, no. 5, pp. 279–283,
2011.

[31] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, “Breaking Through
the Speed-Power-Accuracy Tradeoff in ADCs Using a Memristive
Neuromorphic Architecture,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 5, pp. 396–409, 2018.

[32] M. G. Jomehei, S. Sheikhaei, E. H. Hafshejani, and S. Mirabbasi,
“A Low-Power Logarithmic CMOS Digital-to-Analog Converter for
Neural Signal Recording,” IEEE Transactions on Circuits and Systems
II: Express Briefs, pp. 1–1, 2021.

[33] P. Kumar, K. Zhu, X. Gao, S.-D. Wang, M. Lanza, and C. S. Thakur,
“Hybrid Architecture Based on Two-dimensional Memristor Crossbar
Array and CMOS Integrated Circuit for Edge Computing,” npj 2D
Materials and Applications, vol. 6, no. 1, pp. 1–10, 2022.

https://www.forbes.com/sites/karlfreund/2021/09/23/ibm-research-says-analog-ai-will-be-100x-more-efficient-yes-100x/?sh=61b5e23b129b
https://www.forbes.com/sites/karlfreund/2021/09/23/ibm-research-says-analog-ai-will-be-100x-more-efficient-yes-100x/?sh=61b5e23b129b
https://www.forbes.com/sites/karlfreund/2021/09/23/ibm-research-says-analog-ai-will-be-100x-more-efficient-yes-100x/?sh=61b5e23b129b
https://www.src.org/about/decadal-plan/
https://www.src.org/about/decadal-plan/
https://doi.org/10.1007/BF01239381
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://arxiv.org/abs/2106.01958
https://arxiv.org/abs/2106.01958

	I Introduction
	II Shape-based Analog Computation
	III Basic S-AC circuits for ML Inference
	III-A ReLU Implementation with S-AC
	III-B S-AC based Analog Multiplier
	III-C Compressive Memory with S-AC

	IV Measurement Results
	IV-A S-AC ReLU Measured Results
	IV-B S-AC Multiplier Measured Results
	IV-C S-AC Compressive Memory Measured Result
	IV-D Energy and Error Analysis
	IV-E Performance analysis

	V Regression Results
	VI Conclusion
	References

